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ABSTRACT

In order to increase the supply of timber especially from industrial tree plantations (ITPs) and at the same time 
reducing the pressure on the remaining natural forests, proper planning and management must be strengthened. A 
plantation manager can efficiently do this if equipped with the right information using the latest but cost-efficient 
technology. This study was conducted to show the usefulness of remote sensing datasets in approximating the spatial 
distribution of the relative amount of wood materials in a Gmelina arborea Roxb. plantation and in identifying site 
parameters significant to the growth and development of the plantation. Between October 2019 and March 2020, 
field inventory was conducted within the G. arborea plantation of CMU in Bukidnon. A total of 38 randomly generated 
circular plots of 15-m radius were established. All tree and stand parameters inside the plots were subjected to 
correlation with 13 vegetation indices and 7 bands derived from Sentinel-2 (S2) multispectral image. Findings 
revealed that all but one of the indices were statistically correlated with the mean height, stem volume and basal 
area (BA) with their respective highest R values of 0.59, 0.65 and 0.66 (p<0.01). The Leaf Chlorophyll Index (LCI), after 
subjecting to curve estimation modeling, was able to explain the variation of the field data at 43% and 41% for stem 
volume and BA, respectively with standard errors of estimate of 0.40 and 0.34. It is suggested that more samples 
should be added in the analysis and use a non-parametric regression technique which may improve the model.
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INTRODUCTION

Tree farming is an alternative livelihood for many 
farmers in Mindanao and has been a significant option to 
meet the increasing demand for wood in the region while 
reducing the pressure on the remaining natural forests. 
However, proper planning and management must be 
strengthened to increase the supply of wood especially 
from industrial tree plantations (ITPs). A plantation 
manager can effectively do this if equipped with the right 
information using the latest but cost-efficient technology. 
These information includes, among others, canopy 
height, estimated volume, stand density or basal area 
that may represent harvestable woody materials. These 
tree parameters can be obtained from the field using the 
traditional inventory technique. As reliable as it may be, 
such technique is expensive and laborious. 

The ITP of Central Mindanao University (CMU) in 
Bukidnon, composed chiefly of fast-growing exotic trees, 
has an area of 575.16 hectares (CMU CLUP, 2016) wherein 
the largest area is occupied by Gmelina arborea (about 
371.15 ha or 64.5% of the total tree plantation area). This 
prime ITP species has been gaining popularity not only 
because it is used for posts, house timber or as a material 
for veneer and plywood, but also as a substitute for banned 
forest wood, particularly for use in the furniture industry 
(DOST-PCAARRD, 2018). The tree plantation is one the 
University’s income-generating projects that addresses 
lumber demands of CMU itself, its constituents, and even 

nearby towns for building and house construction. In spite 
of its critical role, a map of the plantation with reference to 
the latest inventory is lacking. A visual presentation of the 
ITP with blocking grids based on certain stand parameters 
would be ideal for a more organized and systematic 
logging operation.

The technology of remote sensing (RS) is a powerful 
tool in assessing vegetation properties at different scales 
and objectives. This paper utilized specifically passive RS 
which relies on natural energy (normally from the sun) that 
is reflected or emitted by the Earth’s surface. This technique 
had been used by a number of authors using optical 
sensors onboard satellites for forest biomass estimation 
(Nguyen et al, 2020), refo- and deforestation analysis 
(Perez et al, 2020), predicting forest structures (Gebreslasie 
et al, 2020) and forest fire assessment (Olpenda, 2019). 
Dos Reis et al (2018) were able to generate correlation 
values of -0.91 for basal area and -0.52 for tree volume 
of Eucalyptus trees using band ratios of Landsat TM 
with 30m spatial resolution. Benguet et al (2012) on the 
other hand produced better results in estimating forest 
structures (R2 up to 0.97) by using a very high resolution 
satellite images. Meanwhile, Günlü and Kadıoğulları (2018) 
were able to directly compare the performance of low 
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and high resolution images to predict the basal area of 
pine forest using vegetation indices. From their research, 
vegetation indices derived from Landsat and Quickbird 
datasets produced R2 values of 0.36 and 0.54, respectively 
for stand volume prediction. Meanwhile, Brown et al 
(2022) combined lidar, an active type of remote sensing 
that uses laser technology, and Sentinel-2 in estimating 
forest metrics of mixed stands. The results of their study 
suggest that the addition of multispectral imagery is not 
significantly useful in improving the estimates of BA and 
volume. Based on these literatures and similar studies, the 
accuracy of the model depends on the types of sensors 
used, spatial resolutions of the dataset as well as the 
conditions of the forest (e.g. age, heterogeneity, stand 
density).

Although there are already a number of studies 
conducted in CMU’s tree plantation and natural forest 
areas (e.g., Olpenda and Tulod, 2019; Rojo and Paquit, 
2018; Tulod et al, 2017), the application of RS technology 
is very scarce. Maps generated from satellite images, 
coupled with field data, are advantageous for inaccessible 
sites and require less resources in the long run. The primary 
purpose of this study therefore is to explore the usefulness 
of RS data in approximating the spatial distribution of the 
relative amount of wood materials in a tree plantation. 
The results are expected to have sustainable management 
implications especially in the use of RS technology as a 
tool to track the development of tree plantations in the 
area for adaptive management. 

Figure 1. Location of the study area with hillshaded depiction of the terrain as basemap

METHODOLOGY

Study Area

The area of the study is the plantation of G. 
arborea (local name: yemane) of CMU, located mostly 
at the northwestern side of its titled land along Sayre 
Highway, Maramag, Bukidnon.  CMU lies between 
125°03’03” E longitude and 7°51’34’’ N latitude and is 
situated 4.5 kilometers south of the city of Valencia. Based 
on the University’s Comprehensive Land Use Plan (2016), 
the total area of the said plantation is 371.15 ha with an 
elevation ranging from 305 to 669 meters above sea level. 
Natural forest of secondary growth and agricultural land 
uses mostly surround the plantation forests. Other ITP 
species in the area include Swietenia macrophylla, Acacia 
mangium and Tectona grandis. On the other hand, majority 
of CMU’s land area has a slope of less than 10% and for 
the G. arborea plantation alone, about 80% of its area 
has a slope of 8 to13%. In terms of climate, the area falls 
under Type III based on the Modified Corona classification 
of PAGASA. Type III climate is characterized as having a 
seasonal variability that is not very well pronounced, with 
dry season from November to April and wet during the 
remaining months of the year. 

Sampling Plots

Sampling plots for this study were randomly 
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generated using GIS. A total of 38 circular plots with 15 
m radius and equivalent area of 0.07 ha. were established. 
The exact coordinates of these plots were taken from the 
field using survey-grade GPS equipment (up to 20cm 
accuracy) at the center of each individual plot. All field 
measurements were conducted between October 2019 
and March 2020.

Field Inventory

The following tree and stand parameters were 
recorded during the fieldwork: diameter at breast (DBH) 
using tree calipers, merchantable height (MH, from 
stump to the first live branch) and the total height (TH, 
from stump to the apical tip of the tree) using a digital 
hypsometer or Haga altimeter. Only trees with a DBH of 
10 cm or greater were included in the inventory. From the 
collected data, other plot-level parameters were calculated 
(equations 1 – 3). Basal area (BA) was later converted to the 
standard unit of density (m2/hectare). BA is important in 
this study because it’s a good indicator of the presence of 
trees quantitatively. Stem volume on the other hand was 
calculated in two ways: (1) those with only pure main stem 
by using the MH as the multiplier (to be called SVMH) 
and (2) main stem plus the crown length by using the TH 
where branches and leaves are present (to be called SVTH). 
Crown length (CL) was also included in the analysis since it 
signifies the condition of the crown relative to the amount 
of branches and leaves. Additionally, the canopy cover for 
each plot, defined as the percentage area above ground 
covered by the leaves, branches and trunks of all trees, was 
taken from the averaged visual estimates of three persons 
conducting the fieldwork.

Figure 2. Sentinel-2’s 13 spectral bands with corresponding bandwidth as illustrated per wavelength versus 
spatial resolution (Image source: https://esamultimedia.esa.int/docs/EarthObservation/Sentinel-2_ESA_

Bulletin161.pdf)

Remote Sensing (RS) Data

Sentinel-2 (S2) from the Multi Spectral Instrument 
(MSI) of the European Space Agency (ESA) was used for 
the analysis. The full S2 mission comprises twin polar-
orbiting satellites in the same orbit (Sentinel-2A and 
Sentinel-2B), phased at 180° to each other. The mission 
monitors variability in land surface conditions, and its wide 
swath width and high revisit time (10 days at the equator 
with one satellite, and 5 days with 2 satellites under cloud-
free conditions which results in 2-3 days at mid-latitudes) 
will support monitoring of changes to vegetation within 
the growing season (ESA, 2015). The sensor has 13 
spectral bands ranging from 443 to 2,190 nm with spatial 
resolutions of 10 m (3 visible and 1 near-infrared (NIR) 
bands), 20 m (4 red edge and 2 shortwave infrared (SWIR) 
bands) and 60 m (3 atmospheric correction bands) (figure 
2). Red edge bands are known to be sensitive to the health 
and condition of any vegetation in general (Curran et al., 
1990; Gitelson et al., 1996; Richardson et al., 2002).

The original 100 km2 tile of S2 imagery utilized in 
this study was downloaded from the Copernicus Sentinel 
Scientific Data Hub website (https://scihub.copernicus.eu/) 
and has an acquisition date of 23 December 2019. It was 
then sub-sampled to cover only the cloud-free area of 
interest for the study site (figure 3). The dataset was in L2A 
level format, which is already an orthorectified Bottom-of-
Atmosphere (BoA) corrected reflectance product.

Generation of Vegetation Indices

Various spectral vegetation indices (VIs) were 
computed from the bands of the S2 image using the 
raster calculator in Quantum GIS software (ver. 3.16.9). 
These indices, generated through mathematical equations 
and transformations (table 1), are computationally simple 
and easy to implement while capturing a wide range of 
vegetation biophysical variables (Xie et al., 2015). A total of 
9 vegetation indices were gathered from different literature 
excluding 4 from this study. A number of literatures had 
been using multiple indices (around 5 to 11) to determine 
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Figure 3. Sub-sampled Sentinel-2 image of the study site in true color composite (bands 4-3-2) dated 
December 23, 2019 to coincide with the time of the field survey

Table 1. Vegetation indices used in this study
Vegetation Index Formula Reference

Modified ratio vegetation 
index (MRVI)

(NIR/red-1)/√(NIR/red+1) Chen and Cihlar, 1996

Enhanced vegetation index 
(EVI)

2.56((NIR-red)/(NIR+6(red)-7.5(blue)+1)) Liu and Huete, 1995

Normalized difference 
vegetation index (NDVI)

(NIR-red)/(NIR+red) Rouse et al., 1973

Green NDVI (GNDVI) (NIR-green)/(NIR+green) Gitelson and Merzlyak, 1998
Soil adjusted vegetation index 
(SAVI)

((NIR-red)/(NIR-red+0.5))×1.5 Huete, 1988

Leaf chlorophyll index (LCI) (NIR-VRE band 5)/(NIR+red) Datt, 1999
Atmospherically resistant 
vegetation index (ARVI)

((NIR-red)-(NIR-blue))/((NIR+red)-(red-
blue))

Thenkabail et al., 2002

Moisture adjusted vegetation 
index (MAVI)

(NIR-red)/(NIR+red+SWIR band 12) Zhu et al, 2014

Inverted Red-edge 
Chlorophyll Index (IRCI)

(VRE band 7-red)/((VRE band 5)/(VRE 
band 6))

Frampton et al., 2013

NDVIRE1 (VRE band 5-red)/(VRE band 5+red) This study
NDVIRE2 (VRE band 6-red)/(VRE band 6+red) This study
NDVIRE3 (VRE band 7-red)/(VRE band 7+red) This study
NDVIRE4 (VRE band 8a-red)/(VRE band 8a+red) This study
Note: NIR = near infrared; VRE = vegetation red edge; SWIR = shortwave infrared
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which is the best predictor of vegetation characteristics 
(e.g. Ali et al, 2020; Raper and Varco, 2015; Marcelli et al, 
2020; Xie et al, 2015).

Data Processing and Statistical Analysis

Before any test was conducted, outliers were 
checked and omitted first. Plot-level correlation test, 
specifically Spearman’s method, was performed between 
the various stand parameters and generated VIs to validate 
any relationships. Additionally, reflectance from bands 3 
(green), 4 (red), 8 (NIR) and all the bands of vegetation red 
edge of S2 were also included in the correlation test. These 
bands and VIs are called S2 variables from here thereafter. 
In order to get the most practical values of S2 variables 
that best correspond to the field data, the same plot area 
was used for extracting their mean values. This was done 
by creating a circular buffer of 15 m for each geographic 
coordinate of all plots before overlaying them with the 
different S2 variables. Due to multicollinearity, the single 
variable with the highest correlation was further subjected 
to different curve estimation regression modeling with the 
total stem volume and BA. The model with the highest R2 
and the smallest standard error of estimate was chosen to 
estimate the spatial distribution of woody materials from 
trees.

RESULTS AND DISCUSSION

Stand Structure

The G. arborea plantation in the study has an 
average number of 309 ± 114.44 trees per hectare or a total 
number of 11,742  trees across the 38 plots sampled (Table 
2). The trees were generally harvestable in size having 
mean DBH per plot of 0.30 ± 0.05 m and total height (TH) 
per plot of 15.71 ± 2.09 m. However, the average length 
of the usable wood portion of the trees (referred to as 
merchantable height, MH) was only about 60% of the TH 
which is equivalent to an average MH of 9.73 ± 2.64 m. The 
rest of the 40% was taken up by the crown cover, which 
had an average crown length (CL) of almost 6 m. Mean 
stem volume (SV) based on MH and TH respectively were 

estimated at 17.89 ± 9.64 m3 and 28.97 ± 2.29 m3, while 
the mean basal area (BA) per plot was 24.81 ± 10.19 m2/ha. 
The merchantable portions of trees in the area or potential 
yield can still be improved by 20% to 30% through regular 
pruning and thinning especially when the trees are still in 
the sapling stage. Tree plantations in the region and in the 
country more generally are poorly maintained resulting in 
a poor wood production rate of only about 632,574 m3 or 
0.006 m3 per capita (FMB-DENR, 2019), which is more than 
80 times lower than the world’s average production rate of 
0.5 m3 per capita (Bruinsma, 2002).

Vegetation Indices and Bands versus Field Data

After omitting the outliers, only 34 samples were 
left and subjected to statistical analysis. The result of 
the correlation test conducted between the S2 variables 
and stand parameters is summarized in Table 3. Only 
those with significant relationships were included in the 
table. Generally, all of the indices and bands involved are 
statistically correlated with the mean tree height, stem 
volume and BA of G. arborea. But the most sensitive index 
in terms of characterization is the LCI with coefficient of 
correlation ranging from moderate to slightly strong 
relationship (R=0.44 to 0.66, p<.01) mostly with those 
functions of the diameter like volume and basal area. 
Further, only 3 out of the 4 indices involving red edge bands 
proposed in this paper showed moderate correlation with 
only one stand parameter (mean height at 0.52 to 0.54, 
p<.01). Among the bands, the red edge bands of 7, 8 
and 8a are responsive to heights and volume (R=0.44 to 
0.55, p<.01). However, it was with band 5 (red edge) that 
registered the highest R at 0.61 with the mean diameter 
followed by band 3 (red). The mean tree height had the 
most number of correlations with the S2 variables (17 out 
of 20, or 85%) with NDVI registering the highest at 0.59.

Curve Estimation Models

Since the LCI recorded the highest correlation with 
the two important measure of wood density – the total 
volume and BA, these variables were subjected to both 

Table 2. Descriptive statistics of stand parameters at plot level

Stand parameter Mean Standard 
deviation

Range Minimum Maximum

No. of trees/ha 309 114.44 538 141 679

DBH (m) 0.30 0.05 0.22 0.21 0.43
TH (m) 15.71 2.09 8.24 11.79 20.03
Maximum TH (m) 21.26 3.12 13.00 15.00 28.00
MH (m) 9.73 2.64 11.94 4.09 16.04
CL (m) 5.93 1.66 6.04 3.22 9.26
Total CL (m) 128.29 51.60 206.00 35.00 241.00
CC (%) 57.99 14.73 52.66 30.00 82.66
SVMH (m³) 17.89 9.64 32.25 4.94 37.19
SVTH (m³) 28.97 2.29 44.43 9.88 54.32

BA (m²/ha) 24.81 10.19 36.55 8.82 45.37
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linear and non-linear regression models. Table 4 shows 
that either power or exponential equations generated an 
adjusted R2 of 0.43 with a standard error of less than 0.40. 
The paper by Günlü and Kadıoğulları (2018) in pine forest 
produced a lower R2 of 0.36 with Landsat dataset using a 
stepwise linear regression. They were able to increased that 
to 0.54 by increasing the spatial resolution of the image 
dataset. Meanwhile, in spite of using the non-parametric 
random forest modeling with lidar technology to generate 
3D models of trees, Brown et al (2022) still produced similar 
statistics for volume estimation (R2=0.45).

Figure 4 below illustrates the curve lines based 
on the four equations fitted with the scatterplot of LCI-
volume samples. It can be noticed that the volume only 
started to increased at 0.84 value of LCI, albeit quite noisy. 
Nevertheless, the trend of this graph is similar to the paper 
of Ali et al (2018) where NDVI and SAVI from Sentinel-2 
were correlated with the aboveground biomass (AGB) of 

Table 3. Spearman’s correlation result between the VIs, bands and stand parameters
mDBH mTH mMH sCL SVMH SVTH BA

MRVI .282 .587** .418* .403* .495** .500** .466**
EVI .166 .546** .461** .371* .484** .487** .413*
NDVI .279 .594** .425* .398* .500** .499** .466**
GNDVI .353* .547** .415* .367* .540** .528** .503**
SAVI .167 .486** .435* .319 .466** .465** .398*
LCI .605** .439** .223 .368* .630** .650** .659**
ARVI .290 .587** .389* .410* .468** .479** .450**
MAVI .254 .530** .428* .326 .500** .466** .447**
IRCI .343* .571** .424* .415* .540** .543** .516**
NDVIre1 -.308 .174 .235 .056 -.070 -.076 -.143
NDVIre2 .222 .515** .373* .348* .384* .393* .365*
NDVIre3 .266 .545** .400* .354* .421* .419* .398*
NDVIre4 .237 .537** .372* .375* .390* .395* .373*
Band 3 -.549** -.210 -.034 -.162 -.332 -.351* -.422*
Band 4 -.317 -.387* -.204 -.253 -.307 -.318 -.341*
Band 5 -.609** -.272 -.055 -.161 -.360* -.377* -.436**
Band 6 -.010 .454** .459** .300 .421* .404* .342*
Band 7 .102 .548** .532** .349* .520** .485** .438**
Band 8 .111 .517** .483** .291 .469** .437** .367*
Band 8a .018 .524** .546** .324 .471** .410* .366*
*p < .05, **p<.01
Note: mDBH=mean DBH, mTH=mean total height, mMH=mean merchantable height; sCL=sum-
mation of crown length; SVMH=stem volume based on MH, SVTH=stem volume based on TH,
BA=basal area

mixed stands. AGB of trees is typically computed from 
allometric equations involving the DBH.

Similarly, it was also either power or exponential 
equations that generated a better fit when predicting 
BA using the LCI (Table 5). Although its adjusted R2 is a 
little lower than that of the volume, the standard error of 
estimate is lower at 0.34 only. Such outcome was validated 
by Günlü and Kadıoğulları (2018) using linear regression 
between the S2 variables against BA. The same authors 
generated an R2 of 0.34 and 0.41 for Landsat and Quickbird, 
respectively. Similar results were seen from the study of 
Brown et al (2022) with R2 of 0.36.

DISCUSSION

The relationships between tree structures and VIs 
or multispectral bands of this study is comparable with 
similar papers in the past. From Dos Reis et al (2018) in 

Table 4. Model summary and parameter estimates for total volume as the response variable

Equation R2 Adjusted R2 Standard error 
of estimate Sig

Parameter estimates
Constant b1 b2

Linear .398 .380 11.316 .000 -372.153 468.152
Quadratic .399 .361 11.489 .000 240.860 -969.338 842.290
Power .445 .427 .397 .000 277.084 15.410
Exponential .444 .426 .398 .000 4.866E-06 18.058
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Figure 4. LCI-Volume scatterplot with curve estimates based on various equations

Table 5. Model summary and parameter estimates for BA as the response variable

Equation R2 Adjusted R2 Standard error 
of estimate Sig

Parameter estimates
Constant b1 b2

Linear .404 .386 8.291 .000 -272.531 347.314
Quadratic .407 .369 8.407 .000 508.698 -1484.635 1073.421
Power .431 .413 .341 .000 167.430 12.865
Exponential .431 .413 .341 .000 5.576E-05 15.084

Brazil, the NDVI of tree plantations from Landsat TM 
revealed an R values of 0.83 and 0.49 (p<0.05) for BA and 
tree volume as compared to 0.47 and 0.50 (p<0.01) in this 
study, respectively. Although their strongest correlation 
occurred between the normalizations of NIR and SWIR 
bands and BA at -0.91. In contrast, the highest R value in 
this paper is between LCI and BA with 0.66. Marcelli et al 
(2020), who also used Sentinel data in a poplar forest in 
Turkey, generated a correlation coefficient of 0.59 between 
NDVI and tree volume. Their highest correlation though 
was at 0.63 between tree volume and by simple ratioing of 
the NIR and SWIR bands.

Mutanga et al (2012) and Imran et al (2019) 
found a stronger relationship between AGB and NDVI 
if red edge bands were used compared to the broader 
NIR band (band 8) of S2 (R is up to 0.80). In contrast, the 
proposed NDVIs with red edge bands in this study had 
weak relationships with both volume and BA (0.36 to 
0.42; p<0.05). Surprisingly, band 7 alone in this study had 
even higher correlations with the two parameters and is 
consistent with that of Imran et al (2019). On the other 
hand, Nguyen and Kappas (2020) reported that among 
the four spectral bands of SPOT-6 image, the red band 
has the strongest correlation with AGB conducted in a 
mixed forest including pines. Conversely, the red band in 
this paper is weakly correlated with only the mean height 
and BA. This could be attributable to the type of species 
being analyzed. The responses of indices and the bands 
involved are sometimes species-specific or restricted only 
to specific types of plants (Huete, 2004; Raper and Varco, 

2015; Xie et al., 2015).

The LCI, developed by Datt in 1999, was originally 
used to determine the chlorophyll content of Eucalyptus 
species at leaf level. Accordingly, it was found to be a 
sensitive indicator of chlorophyll content in leaves and 
was less affected by scattering from the leaf surface and 
internal structure variation. Determination and analysis 
of chlorophyll content are crucial in studying vegetation 
health, forest growth or presence of stress as affected by 
diseases or insects (Yang et al, 2015; Gittelson et al, 2006; 
Sampson et al, 2003). Most of the remote sensing studies 
conducted in relation to chlorophyll assessment were 
done using airborne hyperspectral images which have 
narrower bands and higher resolution (e.g. Carmona et al, 
2015; Zhang et al, 2008) in contrast to the one used in this 
paper. This is probably one of the reasons why the level 
of correlation between the field and RS datasets is only 
moderate. Moreover, stand conditions played important 
role in this kind of modeling as there were components 
captured by the satellite image but were not considered 
in the field data. For instance, the average canopy cover 
of the plots was less than 60% with a standard deviation 
of 15% and a minimum of 30%. Further, the average 
number of trees on per hectare basis from other studies 
(Ali et al, 2018; Günlü and Kadıoğulları, 2018) were at least 
doubled compared to this paper (309 versus 600 to 1000+ 
trees). All of these situations collectively affect the spectral 
characteristics as detected by the satellite sensors because 
soil and understories are visible through the canopy gaps. 
The NDVI, EVI and SAVI had been the earliest and widely 
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used indices for assessing vegetation growth and vigor. 
Hue and Su (2017) consider them as basic vegetation 
indices that exploit the characteristics of green vegetation 
having a generally low reflectance in the visible region 
particularly in the red portion (600-700 nm) but higher in 
the near-infrared (700-1100 nm). It is basically the same 
principle that is being followed by the other VIs in this 
study, although some were modified to lessen the effects 
of the atmosphere, soil background or both. The main 
issue with NDVI is that it tends to saturate as its value gets 
closer to 1. For instance, when the canopy cover is high 
and with dense vegetation, the biomass increases but the 
spectral index remains constant (Imran et al, 2019). This 
is most likely the reason why LCI in this paper is a better 
predictor of BA and volume than NDVI. LCI involved one 
of the red edge bands (Band 5) in the equation which is 
thought to be sensitive to the trees’ structural and health 
condition. These findings had been corroborated by 
Mutanga et al (2012) where index with red edge bands 
had stronger correlation with the biomass compared to 
the conventional NDVI. The rest of the VIs were developed 
to investigate certain leaf pigments or to improve the 
estimation of specific vegetation parameters such as 
biomass, leaf area index (defined as the area of single leaf 
per area on the ground) and presence of moisture (Zheng 
and Moskal, 2009; Imran et al., 2020; Gao, 1996; Silleos et 
al., 2006).

Mapping Out Priority Areas for Harvesting

The LCI values within the G. arborea plantation 
were substituted to the non-linear power equation of the 
LCI-volume model to demonstrate the spatial distribution 
of the plantation’s woody materials. The product was 
resampled to 27m to coincide with the area of the circular 

Figure  6. Resampled LCI-volume power equation model of G. arborea plan-
tation for estimating which grids need to be harvested first where priorities 1 
and 4 are the first and last to be cut (1 grid = 0.7 ha)

field plot and then reclassified into four categories based 
on the quantile value (figure 6). The categories pertain to 
the harvesting priorities where 1 and 4 in the map are the 
top and last priorities for cutting, respectively.

CONCLUSION

This study had just proven the usefulness of RS 
technology as an aid in identifying site parameters of the 
G. arborea plantation at landscape level significant to its
growth and planning development. Since satellite images
for the area are available on a regular basis (at least in the
case of S2), the methodology introduced can be conducted
yearly to monitor any changes in the plantation for adaptive 
management. As a result, plantation managers become
more efficient in performing their task. Actual validation
on the field, additional sampling plots and the use of
non-parametric regression modeling or machine learning
algorithm are recommended to further strengthen the
analysis.
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