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ABSTRACT 

As road traffic accidents, injuries, and deaths have been persistent 

throughout the years, the demand for road safety development has increased. 

This study focuses on developing proactive safety evaluations of unsignalized 

intersections by using the proximal surrogate measure of Post-Encroachment 

Time (PET) in measuring the risk of transverse collisions. Procedures involved 

the determination of peak hour period, manual measurement of PET, 

identification of critical conflict zones, and development of prediction models 

for crash estimations. A total of 1551 conflicts were observed, in which an 

average PET value of 3.57s was obtained. The PET dataset was subjected to 

goodness-of-fit tests, and the best-fitting model of Johnson SU distribution 

was determined. Through this statistical model, the probability of right-angle 

collisions was determined to be 18.11%. Subsequently, it was estimated that 

793 crashes per year are predicted to occur within the intersection. The 

determination of intersection safety levels was unfeasible due to the lack of 

relative safety standards for this procedure. However, the study has provided 

safety parameters that can be used as references in evaluating risk mitigation 

policies and safety projects for the intersection. 
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INTRODUCTION 

In a report by the World Health Organization 

(2018), the number of road traffic deaths has increased to 

1.35 million global cases in 2016. Moreover, the statistical 

trend for the number of road crashes in Metro Manila is also 

on the rise (MMDA 2019). Traditional methods of on-road 

safety evaluation involve the use of historical accident data 

which pose longer and more difficult approaches in the 

process of safety evaluation. Additionally, these types of 

evaluations lean toward reactive approaches which depend 

on the premise that accidents must have occurred first 

before road safety could be evaluated (Killi and Vedagiri 

2014). In tackling these growing challenges to road safety, 

it is more desirable to use faster and more efficient methods 

that are independent of using historical accident data in the 

road safety analysis. 

Traffic conflict technique (TCT) is one of the 

developing methods in establishing proactive road safety 

analysis. This technique was developed from the concept of 

analyzing traffic conflicts or critical incidents that denote 

near-collision occurrences (Chin and Quek 1997). Traffic 

conflict is best described as the reactive evasive response 

of two or more vehicles due to a near-collision event (Parker 

and Zegeer 1989). Research interest in the proactive 

surrogate approach in quantifying the severity and risks of 

traffic conflicts has gained popularity over the years 

(Mahmud et al. 2016). This approach uses surrogate safety 

measures or observable events within a traffic conflict that 

can assume highly probable collisions or instances of 

“almost accidents”, near-misses, traffic conflicts, etc. 

(Varhelyi et al. 2018). These measures attribute several 

variables such as distance, deceleration, and other 

indicators for vehicle conflict (Mahmud et al. 2016). The 

following are listed surrogate measures for safety 

evaluation: Time to Collision (TTC), Time Exposed Time to 

Collision (TET), Time Integrated Time to Collision (TIT), 

Modified TTC (MTTC), Crash Index (CI), Time-to-Accident 

(TA), Time Headway (H), and PET (Mahmud et al. 2016). PET 

is the time difference between the last transverse vehicle 

entry time and first vehicle exit time at a certain node. 

According to Pirdavani et al. (2010), PET is one of the most 

commonly used surrogate measures in evaluating 

intersections, as it is easier to extract and analyze than of 

general parameters such as TTC. 

In a study by Kili and Vedagiri (2014), surrogate 

safety measures were used in evaluating an unsignalized 

three-legged intersection, for which they obtained 

frequency distributions of vehicle PET that allowed the 

identification of intersection nodes with the highest conflict 

frequencies. Their follow-up study in 2016 has developed 

this methodology by using the concept of critical speeds, 

which led them to obtain conflict distributions of different 

types of turning vehicles and evaluate a three-legged 

intersection into having 20.3% total right-angle or 

transverse conflicts. On the other hand, Songchitruska 

(2004) conducted an innovative non-crash-based safety 

evaluation of intersections using the extreme value theory 

approach. A total of 18 four-legged intersections were 

considered in their study, in which PET values were 

determined through automated, semi-automated, and 

manual methods of counting. It was found that the manual 

method of PET determination produced the lowest 

percentage of measurement error and was subsequently 

used for the study. Additionally, the validity of PET as a 

safety indicator was also tested in Songchitruska’s study, in 

which historical crash data were used as response variables 

for Poisson and Negative Binomial Regression methods for 

PET validation. After establishing the validity of PET for 

safety evaluation, the extreme value theory approach was 

made possible and consequently produced annual crash 

frequency models for 18 intersections in Lafayette, Indiana. 

Multiple studies on the extreme value theory approach for 

the analysis of proximal surrogate measures have then been 

prominent in the field of road safety research (Farah and 

Azevedo 2016; Pawar et al. 2018; Goyani et al. 2019; Reddy 

et al. 2019). This growing literature on proximal surrogate 

measures has continuously paved developments in road 

safety analysis; however, Zheng et al. (2014) assert that 

difficulties in cross-validations and generalizations still 

inhibit major developments in this field.  

This study intends to apply and broaden 

knowledge on the use of proximal safety analysis. It aims to 

proactively evaluate the road safety performance of an 

unsignalized T-junction without dependence on historical 

data. It specifically aims to evaluate the frequency of right-

angle conflicts at a T-junction using the proximal surrogate 

measure of PET, determine critical conflict zones for 

transverse collisions within the intersection, develop and 

calibrate statistical models for crash frequency estimations, 

and estimate the probability of right-angle collisions within 

the intersection. The study can help in providing a quicker 

approach to obtaining road safety information, which could 

then evaluate the effectiveness of related road safety 

policies. The application of this study to the selected 

intersection can help the local traffic offices in obtaining 

reference data for developing intersection safety policies.  

METHODOLOGY 

The methodology consists of four major parts, 

namely: site selection, data collection, data extraction and 

processing, and safety analysis. 

Site Selection 

Selected study area is San Pabo City, a component 

city in the landlocked province of Laguna, Philippines. The 

land area of the city is about 197 square kilometers which 

constitutes 10.25% of Laguna's total area. According to the 
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2020 Census the population of the city is around 285,348. 

This represented 8.44% of the total population of Laguna 

province. The population density is 1,444 inhabitants per 

square kilometer (PhilAtlas, 2023). The city has a growing 

population and economic activities, hence becoming more 

congested during peak hours, weekends and holidays.  

 In determining specific intersection for the study, 

the following guidelines on site selection according to the 

literature recommendations were set also considering 

available traffic footage provided by the San Pablo City 

Traffic Management Office (SPCTMO): 

 The intersection must be multi-laned and

three-legged.

 The intersection must be unsignalized.

 The intersection must be equipped with

surveillance equipment that provides a clear

perspective over the intersection for traffic

data collection.

 The intersection must be continuously

operating.

 Instances of right-angle collisions are feasibly

observable by the surveillance equipment.

The study site of Rizal Avenue-Holy Rosary Street 

T-Junction was selected based on the aforementioned site

characteristics. It is an unsignalized three-legged

intersection or T-junction that is located at the entry point

of Barangay Bagong Pook, San Pablo City, Laguna. It

connects the local road of Holy Rosary street to Rizal

Avenue, which serves as a collector road for vehicles

entering and exiting the city proper. Rizal Avenue operates

as a major road with four lanes, in which two lanes are

dedicated to each opposing traffic. Its northbound traffic

leads to the Colago-Cosico Avenue intersection, while the

southbound traffic leads to the San Pablo City Plaza or the

city proper of San Pablo itself. Holy Rosary street, on the

other hand, is a two-lane minor road that serves as the main

entry point to Barangay Bagong Pook. Moreover, the

junction in the study is relatively close to the non-operating

San Pablo-Malvar Philippine National Railway (PNR)

railroad track. The intersection is equipped with pavement

markings, pedestrian lanes, railroad crossing signage, and

CCTV footages at video frame rate of 30 fps. Commercial

establishments near the intersection include gas stations, a

Utility Van (UV) – express terminal, and a few convenience

stores. Figures 1 and 2 show the location of the intersection

in both plan and street views, respectively.

Figure 1. Rizal Avenue-Holy Rosary Street T-Junction Plan View. 
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Figure 2. Rizal Avenue-Holy Rosary Street T-Junction Street View. 

Traffic Data 

Traffic data to be analyzed for this study is collected 

through a road inventory survey and classified traffic 

volume count. Figure 3 presents the study intersection 

sketch, in which geometric properties and road facilities are 

shown. The sketch shows that the road widths of the major 

and minor roads are 10.4 m and 4.5 m, respectively. 

Figure 3. Study Intersection Sketch. 

A classified traffic volume count was done during 

peak hour period (10-11 AM) to estimate the traffic 

condition and vehicular composition of the intersection in 

this study. Each vehicle movement was given designations 

and is presented in Figure 4. All directional movements as 

shown in the figure (V1-V13) were considered to feasibly 

obtain critical conflict zones for right-angle collisions. A 

total of 60 forms have been processed and were encoded 

in Microsoft Excel for analysis. 
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Figure 4. Plan view of the observed vehicle movements in the T-junction. 

Figures 5 and 6 show the 15-minute traffic volume 

variations at 6 to 11 AM and 3 to 8 PM, respectively. The 

variation charts show that the traffic volume peaked at the 

period of 10:00 to 11:00 AM, which has a total flowrate of 

5581 pcu/hr.  

Figure 5. 15-minute Traffic Volume Variation from 6 to 11 AM. 

Figure 6. 15-minute Traffic Volume Variation from 3 to 8 PM. 

The traffic volume count for each vehicle 

classification in the traffic flow is summarized in Figure 7. It 

was found that the traffic flow is mostly composed of three-

wheelers (3W), covering 57% of the overall traffic 

composition. It could be observed that the traffic 

composition was greatly affected by the IATF regulations, in 

which PUJs were expected to comprise larger volumes 

relative to the study’s survey. 

0

200

400

600

800

1000

1200

1400

03:00 PM 04:00 PM 05:00 PM 06:00 PM 07:00 PM 08:00 PM 09:00 PM

T
ra

ff
ic

 V
o

lu
m

e 
(p

cu
)

Time

0

200

400

600

800

1000

1200

1400

1600

06:00 AM 07:00 AM 08:00 AM 09:00 AM 10:00 AM 11:00 AM 12:00 PM

T
ra

ff
ic

 V
o

lu
m

e 
(p

cu
)

Time



22 

Agramon, et.al CMUJS | Vol. 28 No. 1 | JANUARY – DECEMBER 2024 

Figure 7. Overall traffic composition from all lane directions.

Data Extraction and Processing 

The peak hour period of 10 to 11 AM was selected 

based on the traffic volume data, utilizing the passenger car 

equivalent factors (PCEF) set by the Department of Public 

Works and Highways (DPWH). To further characterize the 

chosen peak hour period, the hourly traffic volume per lane 

direction and the period’s traffic composition were 

determined. Figure 8 shows the traffic volume per lane 

direction in the selected peak hour period, in which it was 

determined that the traffic direction of V1 obtained the 

most traffic flow rate with 1839 pcu/hr. Moreover, Figure 9 

summarizes the peak hour period traffic composition. This 

procedure accounts for the significance of traffic volume in 

the safety evaluation of unsignalized intersections. 

Figure 8. Traffic volume per lane direction within the peak hour period. 
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Figure 9. Traffic composition within the peak hour period. 

The manual frame counting method was used in 

processing the peak hour period footage for safety analysis. 

It involves the determination of conflict zone references for 

the computation of PET counts. For this study, 2.5 m by 2.5 

m grids were overlaid on the study site based on the study 

Killi and Vedagiri (2014). The study is limited by the footage 

specifications, wherein the available footages are recorded 

at a framerate of 24 frames per second (fps). Babu and 

Vedagiri (2016) measured the PET at a framerate of 25 fps, 

indicating a PET measurement accuracy of 0.040 s. The 

study of Killi and Vedagiri (2014), on the other hand, used a 

playback speed of 6 fps which results to a better accuracy 

of 0.01 s. Their studies indicate that measuring PET at more 

precise frame rates provides better accuracy. This is evident 

through a manual frame counting method since the 

footage is being analyzed on a frame-by-frame basis. The 

lower the number of frames being played in a second can 

show more detailed vehicle movement. Additionally, 

limitations include measurement error from the differences 

between the real-life and image space provided by the 

footage.  The scale of these grids was referenced to the map 

scale available from Google Maps. Through Autodesk 

AutoCAD, a map-scaled grid was initially overlaid on the 

top view of the intersection in the study and is presented in 

Figure 10.  

Figure 10. Overview of reference grids on the study site. 

After which, the 2.5 m by 2.5 m grid was converted 

to a footage ratio of 704 by 408 pixels to be superimposed 

on the video footage. It should be reiterated that the study 

assumed a procedure that only approximates actual 

measurements, most particularly on the overlaying of grids 

on the video footage. The adapted procedure still provides 

close approximations for the accessibility of PET counts 

(Ismail et al. 2013; Kassim et al. 2014) even without the use 

of camera calibration techniques. Overlaid grids on the 

footage are presented in Figure 11. 
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Figure 11. Reference grid layout on the peak hour video footage. 

Conflict zones were identified through the grid 

layout according to their type of turning movement. Each 

cell within the grid was given an identification number to 

allow for easier procedures in identifying critical conflict 

spots. With this, PET counts can then be manually 

processed through simultaneous observation of the 

processed footage and encoding of conflict time instances 

in a dedicated spreadsheet. From the peak hour footage, 

the traffic conflicts were observed on a frame-by-frame 

basis. This study focuses on turning conflicts, which is 

defined by the instance of a vehicle exiting a conflicted spot 

(t1) and the instance of the next vehicle entering the same 

conflict spot (t2). PET can then be calculated using equation 

1. The equation denotes the time difference between the

two observed instances and is represented by a conflict

spot. A higher difference between t1 and t2 represents a 

large PET value that depicts a longer time interval before a 

collision happens between the observed vehicles in these 

two instances. Large values of PET are usually disregarded 

in critical conflicts analysis as these pertain to non-

hazardous events (Kassim et al., 2014). On the other hand, 

PET values that are closer to zero are those regarded as 

traffic conflicts. These also include events where PET values 

are less than zero, wherein such cases happen when the 

next vehicle enters before the first vehicle exits it. 

Numerically, the recorded instance of the first vehicle 

exiting the conflict spot (t1) will be larger than the recorded 

instance of the next vehicle entering the conflict spot (t2). 

By Equation 1, a negative PET will be obtained in this type 

of event. 

𝑃𝐸𝑇 =  𝑡2 − 𝑡1  Eq. 1

This procedure was conducted on every turning 

movement, particularly, right-turning movement from the 

minor road, and left-turning movement from both minor 

and major roads. The type of vehicle involved in an 

observed traffic conflict was also recorded for statistical 

analysis. 

Safety Analysis 

Critical conflicts are analyzed through the 

determination of critical zones and turning movements of 

vehicles within the intersection. Since the PET count 

procedure has also accounted for the location of each 

conflict instance by providing a dedicated column for 

conflict zones, the number of recurring conflicts for each 

conflict zone can then be tallied. The same can be done in 

obtaining the most critical turning movement, as PET 

counts were tallied according to it. 

Easyfit application has then been used to formulate 

numerical descriptive measures for the data collected from 

PET counts. This is to provide parameters for the 

distribution fitting processes, which would be used in 

generating calibrated crash frequency prediction models. 

After obtaining the normality of the PET count 

dataset from descriptive statistics, the data is then tested 

for the best-fitting distribution model via Easyfit. The 

application uses the tests of Kolmogorov-Smirnov (KS), 

Anderson-Darling, and Chi-Square Goodness-of-fit (GOF) 

in finding the most reliable mathematical model for the 

obtained dataset. These tests are done by following the 

standard methods of GOF tests, in which the null and 

alternative hypotheses are evaluated through computed 

test statistics. Easyfit determines the best-fit model by 

listing the top distributions that could fit the data according 

to their computed test statistic. All tests were done in 20%, 

10%, 5%, 2%, and 1% levels of significance to determine the 

minimum range of precision at which a model can fit the 

data.  
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In estimating the likelihood of crashes, each 

distribution uses a corresponding probability density 

function and various empirical parameters. These empirical 

parameters are solved by the program through the 

cumulative probabilities of the actual and theoretical data. 

Easyfit assumes initial theoretical data that closely fits the 

actual dataset, and the difference between both datasets is 

compared. As determined by Easyfit for this study, the 

distribution models of Johnson SU, Three-Parameter Log-

Logistic, and GEV are to be given emphasis. 

Johnson SU uses the function presented in 

equation 2, where 𝛾 is the shape parameter 1, 𝛿 is the shape 

parameter 2, 𝜆 is the scale parameter, and ξ is the location 

parameter.

𝑓(𝑥) =
𝛿

𝜆√2𝜋√𝑧2+1
exp (−

1

2
(𝛾 + 𝛿 ln(𝑧 + √𝑧2 + 1))

2
)  Eq. 2 

Equation 3 then presents the function used for the Three-Parameter Log-Logistic model, where 𝛼 is the shape 

parameter, 𝛽 is the scale parameter, and 𝛾 is the location parameter. 

𝑓(𝑥) =
𝛼

𝛽
(

𝑥−𝛾

𝛽
)𝛼−1 (1 + (

𝑥−𝛾

𝛽
)

𝛼

)
−2

 Eq. 3 

Lastly, the GEV distribution uses the probability density function presented in equation 4, where 𝑘 is the shape 

parameter, 𝜎 is the scale parameter, 𝜇 is the location parameter. 

𝑓(𝑥) = {

1

𝜎
𝑒𝑥𝑝 (−(1 + 𝑘𝑧)−

1

𝑘) (1 + 𝑘𝑧)−1−
1

𝑘  𝑘 ≠ 0

1

𝜎
𝑒𝑥𝑝(−𝑧 − 𝑒𝑥𝑝(−𝑧))  𝑘 = 0

 Eq.4 

The best-fitted model aims to predict the 

probability of a PET value less than or equal to zero, 

representing the occurrence of a crash. Since this study 

used the peak hour period for analysis, then the probability 

of crashes was predicted in hourly intervals. After obtaining 

the best-fit model for the data, an annual crash risk 

frequency estimate can be obtained by using exposure 

factors. Reddy et al. (2019) estimated crash frequency by 

associating the occurrence of crashes or traffic conflicts 

with unit exposure. By following this premise, the 

probability obtained from the best-fit model can be 

multiplied to an average exposure time wherein conflicts 

can happen. This exposure time was assumed to be 12 

hours per day or 4380 hours in a year. Equation 5 simplifies 

this estimation, where C is the crash frequency per hour in 

a year, and E is the average hourly exposure time in a year. 

𝐶 = (𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑃𝐸𝑇 < 0𝑠) ∙ (𝐸)  Eq. 5 

RESULTS 

Post-Encroachment Time Data 

A sample of recorded data is provided in Table 1, 

which shows the spreadsheet format for manual PET 

measurement. The time instances of a first exiting vehicle’s 

rear end touching the edge of a conflict zone are labeled as 

First Exit (t1), while the events of a last vehicle’s front end 

entering the conflict zone are labeled as Last Entry (t2). 

Moreover, the frequency of conflicts according to conflict 

spots was also recorded for critical conflicts analysis.

Table 1. Sample Spreadsheet for Manual PET Measurements in conflict spots. 

Conflict ID Conflict Spot 
First Exit (t1) Last Entry (t2) PET (s) Type of Vehicle 

mm ss mm ss Turning Through 

1 1.4 0 3.04 0 4.09 1.043 3W SEDAN 

2 1.4 0 4.00 0 4.09 0.083 3W 2W 

3 1.4 0 5.80 0 4.09 -1.71 3W 2W 

4 1.4 0 7.67 0 5.84 -1.84 3W VAN 

5 1.4 0 21.60 0 21.77 0.17 SEDAN VAN 

6 1.4 0 21.60 0 25.285 3.67 2W VAN 

7 1.4 0 21.60 0 26.11 4.51 3W VAN 
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8 1.4 0 21.60 0 29.07 7.47 3W VAN 

9 1.4 0 21.60 0 31.249 9.64 SEDAN VAN 

10 1.4 0 21.60 0 35.20 13.60 3W VAN 

11 1.4 0 37.95 0 36.75 -1.21 3W 3W 

12 1.4 1 0.06 1 8.57 8.51 SEDAN 3W 

13 1.4 1 15.53 1 16.16 0.63 SEDAN SUV 

14 1.4 1 22.62 1 24.469 1.84 SEDAN 2W 

15 1.4 1 30.54 1 29.265 -1.29 3W 3W 

16 1.4 1 44.10 1 45.73 1.63 VAN VAN 

17 1.4 1 58.08 1 59.04 0.96 VAN VAN 

18 1.4 2 1.66 2 2.16 0.50 VAN VAN 

19 1.4 2 17.64 2 17.76 0.13 VAN SEDAN 

20 1.4 2 20.775 2 21.10 0.33 PUJ SEDAN 

Critical Zones Determination 

Conflict zone frequencies were tallied according to 

their type of turning movement. The zones with the highest 

frequencies of traffic conflict are then deemed critical. Table 

2 shows the summary of conflict frequencies according to 

their conflict zones. The conflict spot of 1.4 obtained the 

highest number of occurring conflicts with a count of 477. 

This was followed by conflict spots 3.4 and 2.4, with 310 and 

239 conflicts respectively. Moreover, the event of left-

turning vehicles from the major road contributed the most 

in conflict occurrences within the intersection. 

Table 2. Summary of Conflicts According to Conflict Zones for Turning Vehicles. 

Conflict Zones 
Right-Turning Vehicles 

from Minor Road 

Left-Turning Vehicles 

from Minor Road 

Left-Turning Vehicles 

from Major Road 
Total 

1.1 0 0 0 0 

1.2 0 4 0 4 

1.3 0 0 61 61 

1.4 468 2 7 477 

2.1 0 3 0 3 

2.2 0 9 1 10 

2.3 0 29 168 197 

3.1 0 20 0 20 

3.2 0 25 0 25 

3.3 0 55 84 139 

3.4 0 55 255 310 

4.1 0 2 0 2 

4.2 0 22 1 23 

4.3 0 8 14 22 

4.4 0 0 19 19 

Total 473 283 795 1551 

Descriptive Statistics 

After processing the PET counts, the resulting 

dataset was analyzed through descriptive statistics and is 

presented in Table 3. 16 PET values were obtained, which 

also describes the total number of turning vehicle conflicts 

in the intersection throughout the observation period. The 

mean PET value for the intersection is 3.57s and each 

observation deviated from the mean by 4.772s on average. 

At 95% confidence, the average PET value in the 

intersection lies within 3.33s and 3.81s. The positive 

skewness value of 2.06 means that there are generally low 

values of observed PET in the intersection, denoting higher 

risks for right-angle collisions. The measure of kurtosis also 

indicated that the data is not normally distributed. To 

further characterize the dataset, a histogram of the PET 

count has also been provided in Figure 12.
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Table 3. Descriptive Statistics of PET Count Data. 

Statistic Value 

Sample Size 1551 

Range 60.978 

Mean 3.5663 

Variance 22.772 

Std. Deviation 4.772 

Coef. of Variation 1.3381 

Std. Error 0.12117 

Skewness 2.056 

Excess Kurtosis 12.107 

Minimum -26.944

Maximum 34.034

Figure 12. Histogram of PET values. 

Crash Frequency Prediction 

Table 4 summarized the results from the different 

tests for goodness of fit. It is observed that the computed 

test statistics for all of the tests were higher than the critical 

values at all levels of significance, hence, the null hypothesis 

is rejected. The actual data does not follow these 

distributions; however, these models have the lowest values 

of test statistics relative to other fitted distributions in 

Easyfit. The most fitting distribution for the Anderson-

Darling test, Kolmogorov-Smirnov test, and Chi-square 

GOF test are Johnson SU, GEV, and Johnson SU, 

respectively.   

Table 4. Summary of Results from the different tests for goodness of fit. 

Type of Test Distribution Parameters Test Statistic 

Critical 

Values (α = 

0.2, 0.1, 

0.05, 0.02, 

0.01) 

Anderson-

Darling Test 

Johnson SU 
γ=-0.92  δ =1.37 

λ=3.82  ξ=-0.03 
17.21 1.37, 1.93, 

2.50 3.29, 

3.91 
Log-Logistic (3P) α=18.91  β=38.42  γ=-35.45 19.76 

Cauchy σ=1.70  μ=2.38 36.67 

Kolmogorov-

Smirnov Test 

General Extreme 

Value 
k=0.13  σ=2.78  μ=1.58 0.077 

Probability Density Function

Histogram Gen. Extreme Value

x

322824201612840-4-8-12-16-20-24

f(
x
)

0.64

0.56

0.48

0.4

0.32

0.24

0.16

0.08

0



28 

Agramon, et.al CMUJS | Vol. 28 No. 1 | JANUARY – DECEMBER 2024 

Log-Logistic (3P) α=18.91  β=38.42  γ=-35.45 0.08 0.03, 0.03, 

0.03, 0.04, 

0.04 
Johnson SU 

γ=-0.92  δ=1.37 

λ=3.82  ξ=-0.03 
0.083 

Chi-square 

GOF Test 

Johnson SU 
γ=-0.92  δ=1.37 

λ=3.89  ξ=-0.032 
123.92 13.44, 15.99, 

18.31, 21.16, 

23.21 
Log-Logistic (3P) α=18.91  β=38.42  γ=-35.45 192.81 

Cauchy σ=1.70  μ=2.38 271.87 

The top three distributions from the different fitting 

tests were used for the comparison of probability functions 

for crash risk estimation in which the Johnson SU function 

was found to be the most like the PET histogram. 

Additionally, it has also been consistently ranked as the 

topmost model in the GOF tests. 

Figure 13. The fit of PET values using GEV, Log-Logistic, and Johnson SU distributions. 

Through Equation 2, the probability distribution curve of Johnson SU has been obtained and its parameters are 

evaluated in Table 5. 

Table 5. Johnson SU Parameter Values 

Probability Distribution 

Curve 
Parameter Value 

Johnson SU 

𝛾 -0.92

𝛿 1.37

𝜆 3.82

ξ -0.03

Log-Logistic 

𝛼 18.91

𝛽 38.42

𝛾 -35.45

GEV 

𝑘 0.13

𝜎 2.78

𝜇 1.58

By using the probability density function obtained 

from Johnson SU, the probability of vehicular crash events 

can be estimated. The probability is computed through the 

fitted distribution profile and is estimated to be 18.11%. It 

could then be predicted through Equation 5 that 793 

crashes per hour can occur each year. 
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DISCUSSION 

Statistical modeling procedures have then found 

that the top three fitting distributions for the PET dataset 

are Johnson SU, three-parameter Log-Logistic, and GEV 

models. The resulting estimations from these distributions 

show that the three-parameter log-logistic and GEV models 

tend to estimate lower prediction values; hence, the 

Johnson SU model was chosen as the best-fit model for 

crash frequency estimation. Using this model, it was found 

that the probability of right-angle crashes within the 

intersection is 18.11%. This probability also pertains to a 

prediction of 793 right-angle crashes per year. Given these 

estimations, it can be said that the unsignalized three-

legged intersection in this study is at relatively lower crash 

frequency rates as compared to the study conducted by 

Pawar et al. (2018), in which an undivided unsignalized 

intersection has obtained an overall estimate of 30% 

probability of a crash. It was also observed that the resulting 

estimate from this study is lower than the divided 

intersection variant in the study of Pawar et al., which 

obtained a value of 21% probability of crash estimate. It was 

concluded from their study that divided intersections have 

lower estimates of crashes due to an improved driving 

environment (Pawar et al. 2018). The results from this study 

deviated from their conclusions for divided unsignalized 

intersections. Moreover, Reddy et al. (2019) have conducted 

the same methodology on an uncontrolled four-legged 

intersection to determine the reduction of crash risk 

induced by the installation of speed bumps within the 

intersection. It was observed from their study that the 

annual crash frequency was 437 crashes per year at the base 

case of the intersection, which is significantly lower than the 

obtained estimate in this study. For the case of controlled 

four-legged intersections, Songchitruska (2004) has 

conducted studies on 18 intersections with the same 

controlled configurations, in which the standard annual 

crashes count of 2.8302 and 3.7910 at 85th and 90th 

percentiles, have been established respectively. It should be 

noted that the counts for controlled intersections deviate 

significantly from uncontrolled crash estimates. 

The results from previous literature imply that the 

difference in driving environments and intersection 

configurations are to be considered when comparing safety 

evaluation studies using the procedure of proximal 

surrogate analysis. Moreover, crash frequency counts from 

previous works are relative to the respective traffic 

environment in which their studies were done. In order to 

achieve an accurate comparative analysis of crash 

frequencies, the reference traffic environment must be 

identical. Due to this limitation, concluding if the 

intersection is safe or unsafe is still considered 

unachievable. As stated by Zheng et al. (2014), it could be 

established that difficulties in the cross-validation and 

generalization of results are still common in this method 

due to the shortage of standards for researchers to base 

their comparisons. However, the safety evaluations for this 

intersection still stand with the obtained crash risk 

estimates. This study provided the current safety 

parameters of the intersection, and additional research is 

needed to establish standards for developing intersection 

safety thresholds. These safety parameters allow the 

evaluation of potential road geometry changes, traffic 

management policies, and other safety mitigation 

procedures that could affect the risk of transverse collisions 

within the intersection. Furthermore, supplementary studies 

for the variables presented in the obtained PET dataset can 

also be pursued. 
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