
Research Article 

On the PU-Pettis Integral in Banach Space 

Ann Leslie O. Vicedo-Flores, Greig Bates C. Flores* 

Department of Mathematics, Central Mindanao University, Maramag, Bukidnon, 

Philippines; f.annleslie.flores@cmu.edu.ph (A.L.O.V.F) 

* Correspondence: greigbates.flores@cmu.edu.ph

ABSTRACT 

 A Riemannian approach of the PU integral is a Henstock-type 

method anchored in the concept of a partition of unity. An integral of 

Pettis type, on the other hand, is essential, somehow, in formulating an 

integral in a Banach space. In this paper, the PU-Pettis integral is 

formulated, along with some of its basic properties. 

Keywords: Pettis integration, partition of unity, Banach space, linear 

functionals 

Citation: Flores, A.L.O., & Flores, 

G.B. (2025). “On the PU-Pettis 

Integral in Banach Space.” CMU 

Journal of Science. 29(2), 05 

Academic Editor: Dr. Einstine M. 

Opiso 

Received: October 24, 2023 

Revised: May 6, 2025 

Accepted: October 9, 2025 

Published: December 26, 2025 

Copyright: © 2024 by the 

authors. Submitted for possible 

open access publication under the 

terms and conditions of the 

Creative Commons Attribution (CC 

BY) license 

(https://creativecommons.org/lice

nses/by/4.0/). 

mailto:f.annleslie.flores@cmu.edu.ph
mailto:greigbates.flores@cmu.edu.ph


6 

Vicedo-Flores &  Flores CMUJS | Vol. 29 No. 2 | JULY – DECEMBER 2025 

1. INTRODUCTION

A Henstock integration that is endowed with a 

covering system obtained from a partition of unity is, 

apparently, the PU-Integral. Up to date, there are relatively 

few papers pursued with regards to the PU-integral. The 

definition were first introduced by J. Kurzweil and J. Jarnik 

and they mentioned that the PU-integral can be untilized 

in formulating a gauge type integral defined on a smooth 

manifold. On one hand, Pettis integral started with being 

an extension of the Lebesgue integral to Banach-valued 

functions on a measure space. Similar approach of the 

Pettis integral in some gauge integrals, like the Henstock 

integral and the McShance integral, were studied. Thus, it 

is worthwhile, however, to investigate Pettis approach of 

the PU-integral. 

Throughout the rest of the paper, with respect to the 

perspective of Henstock, the following conventions will be 

adopted:   

1. A finite collection of point-interval pair

{(𝑡𝑖 , 𝐼𝑖)}𝑖=1
𝑚 , where 𝐼𝑖 is a compact interval, is of Perron type

if 𝑡𝑖 ∈ 𝐼𝑖 for all 𝑖 ≤ 𝑚;  

2. a gauge 𝛿 is any positive functions;

3. for a gauge 𝛿 on [𝑎, 𝑏], a finite collection of

point interval pairs, of Perron type, {(𝑡𝑖 , 𝐼𝑖)}𝑖=1
𝑚  is said to be

𝛿-fine Perron partition of [𝑎, 𝑏] if 𝐼𝑖 is a partition of [𝑎, 𝑏] 

and 𝐼𝑖 ⊆ 𝐵(𝑡𝑖 , 𝛿(𝑡𝑖)); and  

Recently, Boonpogkrong, revisited the PUL integral 

and it’s utilzation for the integrals of a function defined on 

a smooth manifold. Moreover, Flores and Benitez [4, 5] 

extended the latter in Stieltjes approach and provided 

some convergence theorems. In addition, Flores [3] 

introduced the PUL ∗ integral to a Banach-valued function 

as an extension of the PUL-integral. 

1.1 Review of Literature 

Throughout the discussions on the literature, we 

denote a compact interval in ℝ𝑛  by [𝐚, 𝐛] = ∏𝑛
𝑘=1 [𝑎𝑘 , 𝑏𝑘]

with [𝑎𝑘 , 𝑏𝑘] ⊆ ℝ  for each 𝑘 = 1,2, … , 𝑛  and 𝜇([𝐚, 𝐛]) =

∏𝑛
𝑘=1 (𝑏𝑘 − 𝑎𝑘)  be the volume of [𝐚, 𝐛] . In addition, ℝ𝑛  is

equipped with the norm ∥⋅∥ defined by  

∥ 𝐱 ∥= max{|𝑥𝑖|: 𝑖 = 1,2, ⋯ , 𝑛} 

and for 𝑟 > 0 , we write 𝐵(𝐱; 𝑟) = {𝐲 ∈ ℝ𝑛: ‖𝐱 − 𝐲‖𝑛 < 𝑟} ,

where  

𝐱 − 𝐲 = (𝑥1 − 𝑦1, 𝑥2 − 𝑦2, ⋯ , 𝑥𝑛 − 𝑦𝑛)

for 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝐲 = (𝑦1, 𝑦2, … , 𝑦𝑛). 

For a smooth function 𝜓: [𝐚, 𝐛] → ℝ, the support of 

𝜓, denoted by supp𝜓, is given by  

supp𝜓 = {𝐱 ∈ [𝐚, 𝐛]: 𝜓(𝐱) ≠ 0}, 

where 𝐴 denotes the closure of 𝐴 ⊆ ℝ𝑛. A gauge on [𝐚, 𝐛] 

is a positive function defined on [𝐚, 𝐛]. 

Definition 3.1 [3]  A finite collection {𝜓𝑘}𝑘=1
𝑚   of smooth

functions defined on [𝐚, 𝐛] is said to be a partial partition 

of unity if the following holds:   

1. 𝜓𝑘(𝛏) ≥ 0 for almost all 𝛏 ∈ [𝐚, 𝐛] and for all

𝑘 ∈ {1,2, ⋯ , 𝑚} and 

2. ∑𝑚
𝑘=1 𝜓𝑘(𝛏) ≤ 1 for almost all 𝛏 ∈ [𝐚, 𝐛].

If ∑𝑚
𝑘=1 𝜓𝑘 = 1  a.e. on [𝐚, 𝐛] , then {𝜓𝑘}𝑘=1

𝑚   is said

to be a partition of unity.  

Definition 3.2 [3]  Let 𝜓: [𝐚, 𝐛] → ℝ be a smooth function 

and 𝛿 a gauge on [𝐚, 𝐛]. A triple (𝛏, 𝐈, 𝜓), with 𝛏 ∈ 𝐈 ⊆ [𝐚, 𝐛], 

is said to be 𝛿-fine if  

supp𝜓 ⊆ 𝐈 ⊆ 𝐵(𝛏; 𝛿(𝛏)). 

If 𝛿1 and 𝛿2 are gauges on [𝐚, 𝐛] such that 𝛿1(𝛏) ≥

𝛿2(𝛏) and (𝛏, 𝐈, 𝜓) is 𝛿2-fine, then (𝛏, 𝐈, 𝜓) is also 𝛿1-fine. 

Throughout this paper, a division of [𝐚, 𝐛] is a finite 

collection 𝐷 = {𝐈𝑘}𝑘=1
𝑚   of subintervals 𝐈𝑘 = ∏𝑛

𝑖=1 [𝑎𝑖
(𝑘)

, 𝑏𝑖
(𝑘)

]

of [𝐚, 𝐛]  such that 𝑖𝑛𝑡(𝐈𝑘) ∩ 𝑖𝑛𝑡(𝐈𝑗) = ⌀  for 𝑘 ≠ 𝑗  and 

⋃𝑚
𝑘=1 𝐈𝑘 = [𝐚, 𝐛].  

Definition 3.3 [1] A finite collection 𝐷 = {(𝛏𝑘 , 𝐈𝑘 , 𝜓𝑘)}𝑘=1
𝑚  is

said to be a 𝛿 -fine partial PU-division of [𝐚, 𝐛]  if the 

collection {𝜓𝑘}𝑘=1
𝑚  is a partial partition of unity and every

(𝛏𝑘 , 𝐈𝑘 , 𝜓𝑘) is 𝛿-fine. If {𝜓𝑘}𝑘=1
𝑚  is a partition of unity, then 𝐷

is said to be a 𝛿-fine PU-division of [𝐚, 𝐛].  

The existence of 𝛿 -fine divisions of [𝐚, 𝐛]  is 

guaranteed by the open covering theorem and the 

existence of a partition of unity [1].  

Let 𝐷 = {(𝛏, 𝐈, 𝜓)}  is a finite collection of 𝛿 -fine PU 

division of [𝐚, 𝐛]. We define  

𝑆(𝑓, 𝐷) = ∑

𝐷

𝑓(𝛏) ∫
𝐈

𝜓, 
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where ∫
𝐈

𝜓 is the Lebesgue integral of 𝜓 on 𝐈.

Remark 3.4 [4] If 𝐷1 = {(𝛏𝑘 , 𝐈𝑘 , 𝜑𝑘)}𝑘=1
𝑚   and 𝐷2 =

{(𝛏𝑗 , 𝐈𝑗 , 𝜓𝑗)}𝑗=1
𝑚   are two 𝛿 -fine PU-divisions of [𝐚, 𝐛] , then

𝑆(𝑓, 𝐷1) = 𝑆(𝑓, 𝐷2). 

1.2. Objectives 

 The goal of this paper is to formulate the PU-Pettis 

integral in Banach Space including some of its fundamental 

properties. To attain the above mentioned, the following 

are the objectives of the study: To define the PUL ∗-integral 

in Banach Space and to investigate its simple properties; to 

duduce the following:  

1. Linearity property;

2. Cauchy-Criterion and its corollary results; and

3. The existence theorem;

Definition 4.1 [3]  Let (𝑋, ∥⋅∥) be a Banach space. 

A function 𝑓: [𝐚, 𝐛] → 𝑋 is said to be PU integrable to 𝐴 ∈

𝑋 over [𝐚, 𝐛] if for every 𝜖 > 0, there exists a gauge 𝛿 on 

[𝐚, 𝐛] such that for every 𝛿-fine PU-division 𝐷 =

{(𝛏𝑘 , 𝐈𝑘 , 𝜓𝑘)}𝑘=1
𝑚  of [𝐚, 𝐛], we have

‖𝑆(𝑓, 𝐷) − 𝐴‖ < 𝜖. 

If 𝐴 is the PU-integral of 𝑓 over [𝐚, 𝐛], then we write 

𝐴 = (𝒫) ∫
[𝐚,𝐛]

𝑓. 

Note that Remark 3.4 means that a PUL ∗ sum is 

independent of the choice of the partition of unity. 

Consequently, the value the PUL ∗ integral is independent 

of the choice of the partition of unity. 

Example 4.2  Define 𝑓: [0,1] → ℝ by 

𝑓(𝑥) = {
1,  𝑖𝑓   𝑥 ∈ ℚ ∩ [0,1]
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 for all 𝑋 ∈ [0,1] . Let 𝜖 > 0 . Note that ℚ  is a 

countable set; thus, we write ℚ = {𝑞𝑛}𝑛=1
∞ . Define 𝛿: [0,1] →

ℝ by  

𝛿(𝑥) = {
𝜖

2𝑛+1,  𝑖𝑓   𝑥 ∈ ℚ ∩ [0,1]

1,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

for all 𝑋 ∈ [0,1] . Here, 𝛿  is a gauge on [0,1] . Fix 𝐷 =

{𝜉, 𝐼, 𝜑}, a 𝛿-fine 𝑃𝑈-division of [0,1]. Observe that  

| ∑𝐷 𝑓(𝜉) ∫
𝐼

𝜑 − 0| = | ∑𝐷 𝑓(𝜉) ∫
𝐼

𝜑| =

| ∑ 𝐷
𝜉∈[0,1]∩ℚ

𝑓(𝜉) ∫
𝐼

𝜑 + ∑ 𝐷
𝜉∈[0,1]⟍ℚ

𝑓(𝜉) ∫
𝐼

𝜑|

= | ∑ 𝐷
𝜉∈[0,1]∩ℚ

𝑓(𝜉) ∫
𝐼

𝜑| =

| ∑ 𝐷
𝜉∈[0,1]∩ℚ

∫
𝐼

𝜑| = ∑ 𝐷
𝜉∈[0,1]∩ℚ

| ∫
𝐼

𝜑|

≤ ∑ 𝐷
𝜉∈[0,1]∩ℚ

∫
𝐼

|𝜑| ≤ ∑ 𝐷
𝜉∈[0,1]∩ℚ

∫
𝐼

1 =

∑ 𝐷
𝜉∈[0,1]∩ℚ

𝜇(𝐼) 

< ∑ 𝐷
𝜉∈[0,1]∩ℚ

𝛿(𝜉) < ∑∞
𝑛=1 𝛿(𝜉) =

∑∞
𝑛=1

𝜖

2𝑛+1

= 𝜖, 

 where 𝜇 is the 𝐿𝑒𝑏𝑒𝑠𝑔𝑢𝑒 measure. This means that 𝑓, the 

𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 function, also called as the 𝑊𝑒𝑖𝑒𝑟𝑠𝑡𝑟𝑎𝑠𝑠 function, 

is 𝑃𝑈𝐿∗-integrable to 0 on [0,1]. 

Recall that the Dirichlet function fails to be 

Riemann integrable; hence the latter example portays an 

important facet of the 𝑃𝑈𝐿∗-integral. 

2. PROCEDURE AND METHODOLOGY

Researches in pure mathematics in nature are basic 

research. Thus, procedures and methodologies endowed in 

the study are straightforward; namely, gathering of reading 

materials such as books, monographs, and research articles 

that is related and substantial to the results obtained in the 

study. Results are classified as either Theorems (main 

results), Propositions, Lemmas, Corollaries or as immediate 

as Remarks. These results are to be verified only, with rigor 

and rigid manner, by valid proofs.  

3. RESULTS AND DISCUSSION

In this section, the main results of the paper will be 

presented incuding all of its proofs and discussions. For 

simplicity, provided that it is free from confusion, we 

denote a compact interval in [𝐚, 𝐛] by 𝐈. 

Throughout the rest of the paper, provided these 

are free from confusions, we denote by 𝐈, 𝐉, ⋯  a compact 

interval in ℝ𝑛 , 𝑋  is a Banach space, and for an 𝑋 -valued 

function 𝑓 defined on 𝐈, the PUL ∗-integral of 𝑓 over 𝐈 will 

be denoted by  

(𝒫) ∫
𝐈

𝑓.
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Proposition 6.1 Suppose that 𝑓: 𝑰 → 𝑋 is PUL ∗-

integrable over 𝑰. Then for every 𝑥∗ ∈ 𝑋∗, 𝑥∗: 𝑰 → ℝ is 

PUL ∗-integrable over 𝑰 and  

(𝒫) ∫
𝐈

𝑥∗(𝑓) = 𝑥∗((𝒫) ∫
𝐈

𝑓).

   Proof:  Assume that 𝑓 is PUL ∗-integrable to 𝐴 ∈

𝑋 over 𝐈. Let 𝑥∗ ∈ 𝑋∗ and let 𝜖 > 0. Then there exists 𝛿𝜖: 𝐈 →

ℝ+ such that  

∥ 𝑆(𝑓, 𝐷) − 𝐴 ∥𝑋<
𝜖

∥𝑥∗∥𝑋∗+1

for every 𝛿𝜖-fine PU-division of 𝐈. Fix a 𝛿𝜖-fine division 𝐷 of 

𝐈. Then observe that  

∥ 𝑆(𝑥∗𝑓, 𝐷) − 𝑥∗((𝒫) ∫
𝐈

𝑓) ∥𝑋=∥

𝑥∗(𝑆(𝑓, 𝐷) − (𝒫) ∫
𝐈

𝑓) ∥𝑋

≤∥ 𝑥∗ ∥𝑋∗∥ 𝑆(𝑓, 𝐷) − (𝒫) ∫
𝐼

𝑓 ∥𝑋

< (∥ 𝑥∗ ∥𝑋∗+ 1) ⋅
𝜖

∥𝑥∗∥𝑋∗+1

= 𝜖; 

 and the conclusion follows.  ⟍ 

Definition 6.2  Let 𝑓: 𝑰 → 𝑋 be any 𝑋-valued 

function such that 𝑥∗(𝑓): 𝑰 → ℝ is PUL ∗-integrable over 𝑰 

for all 𝑥∗ ∈ 𝑋∗. If for every interval 𝑱 ⊆ 𝑰, there exists an 

element 𝑥𝑱
∗∗ ∈ 𝑋∗∗ such that

𝑥𝐉
∗∗(𝑥∗) = (𝒫) ∫

𝐉

𝑥∗(𝑓) 

for all 𝑥∗ ∈ 𝑋∗, then 𝑓 is called the PUL ∗-Dunford integrable 

over 𝐈 . Moreover, for 𝐉 ⊆ 𝐈 , we write the PUL  ∗ -Dunford 

integral of 𝑓 over 𝐉 by  

(𝒫𝒟) ∫
𝐉

𝑓 = 𝑥𝐉
∗∗ ∈ 𝑋∗∗.

Here, we denote by 𝒫𝒟  the set of all PUL  ∗ -Dunford 

integrable functions 𝑓: 𝐈 → ℝ.  

Remark 6.3 Let 𝑓: 𝑰 → 𝑋 be an 𝑋-valued function 

in 𝒫𝐷(𝑰). If 𝑱 ⊆ 𝑰, then  

(𝒫𝐷) ∫
𝐉

𝑓 = (𝒫𝐷) ∫
𝐈

𝑓 ⋅ 𝜒𝐉 . 

Theorem 6.4   The PUL ∗-Dunford integral of 𝑓 

over 𝑰, if it exists, is unique.  

   Proof:  Suppose that 𝑓  is PUL  ∗ -Dunford 

integrable over 𝐈 . Then for every 𝑥∗ ∈ 𝑋∗ , 𝑥∗(𝑓)  is PUL ∗ -

integrable and for each 𝐉 ⊆ 𝐈 , there exists 𝑥𝐉
∗∗ ∈ 𝑋∗∗  such

that  

𝑥𝐉
∗∗(𝑥∗) = (𝒫) ∫

𝐉
𝑥∗(𝑓)

for all 𝑥∗ ∈ 𝑋∗. For 𝐉 ⊆ 𝐈, assume that 𝑥𝐉
∗∗, 𝑦𝐉

∗∗ ∈ 𝑋∗∗ are the

values of the PUL ∗ -Dunford integral of 𝑓  over 𝐈 . Let 𝑥∗ ∈

𝑋∗. Then 𝑥∗(𝑓) is PUL ∗-integrable over 𝐈. But  

𝑥𝐉
∗∗(𝑥∗) = (𝒫) ∫

𝐉
𝑥∗(𝑓) = 𝑦𝐉

∗∗(𝑥∗).⟍

Theorem 6.5 Let 𝑓, 𝑔 ∈ 𝒫𝒟(𝑰). Then for each 

𝛼, 𝛽 ∈ ℝ, 𝛼𝑓 + 𝛽𝑔 ∈ 𝒫𝒟(𝑰) and  

(𝒫𝒟) ∫
𝐉

(𝛼𝑓 + 𝛽𝑔) = 𝛼 ⋅ (𝒫𝐷) ∫
𝐉

𝑓 + 𝛽 ⋅ (𝒫𝐷) ∫
𝐉

𝑔

for all 𝐉 ⊆ 𝐈.  

 Proof:  Let 𝛼, 𝛽 ∈ ℝ. Fix 𝑥∗ ∈ 𝑋∗. Observe that 

𝑥∗(𝛼𝑓 + 𝛽𝑔) = 𝛼 ⋅ 𝑥∗(𝑓) + 𝛽 ⋅ 𝑥∗(𝑔) 

where 𝛼 ⋅ 𝑥∗(𝑓) + 𝛼 ⋅ 𝑥∗(𝑓) + 𝛽 ⋅ 𝑥∗(𝑔)  is PUL  ∗ -integrable 

over 𝐈 and  

(𝒫) ∫
𝐈

[𝛼𝑥∗(𝑓) + 𝛽𝑥∗(𝑔)] = 𝛼 ⋅ (𝒫) ∫
𝐈

𝑓 + 𝛽 ⋅

(𝒫) ∫
𝐈

𝑔. (6.1) 

 Next, let 𝐉 ⊆ 𝐈 . By the integrability, in a sense of PUL ∗ -

Dundord, of 𝑓  and 𝑔  over 𝐈 , we choose the operators 

𝑥𝐉
∗∗, 𝑦𝐉

∗∗ ∈ 𝑋∗∗ such that for each 𝑥∗ ∈ 𝑋∗

𝑥𝐉
∗∗(𝑥∗) = (𝒫) ∫

𝐉

𝑥∗(𝑓) 

and 

𝑦𝐉
∗∗(𝑥∗) = (𝒫) ∫

𝐉

𝑦∗(𝑓). 

Observe that 𝛼𝑥𝐉
∗∗ + 𝛽𝑦𝐉

∗∗ ∈ 𝑋∗∗ . Put 𝑧𝐉
∗∗ = 𝛼𝑥𝐉

∗∗ + 𝛽𝑦𝐉
∗∗ . Fix

𝑥∗ ∈ 𝑋∗. Then by (6.1)  

𝑧𝐉
∗∗(𝑥∗) = (𝛼𝑥𝐉

∗∗ + 𝛽𝑦𝐉
∗∗)(𝑥∗) = 𝛼𝑥𝐉

∗∗(𝑥∗) + 𝛽𝑦𝐉
∗∗(𝑥∗)

= 𝛼 ⋅ 𝑥𝐉
∗∗(𝑥∗) + 𝛽 ⋅ 𝑦𝐉

∗∗(𝑥∗)

= 𝛼 ⋅ (𝒫) ∫
𝐉

𝑥∗(𝑓) + 𝛽 ⋅ (𝒫) ∫
𝐉

𝑥∗(𝑔)

= (𝒫) ∫
𝐉

[𝛼𝑥∗(𝑓) + 𝛽𝑥∗(𝑔)]

= (𝒫) ∫
𝐉

𝑥∗(𝛼𝑓 + 𝛽𝑔).

 This means that that 𝛼𝑓 + 𝛽𝑔 is PUL ∗-Dunford integrable. 

Moreover,  

(𝒫𝒟) ∫
𝐉

(𝛼𝑓 + 𝛽𝑔) = 𝑧𝐉
∗∗ = 𝛼 ⋅ 𝑥𝐉

∗∗ + 𝛽 ⋅ 𝑦𝐉
∗∗
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= 𝛼 ⋅ (𝒫𝒟) ∫
𝐉

𝑥 ∗ (𝑓) + 𝛽 ⋅ (𝒫𝒟) ∫
𝐉

𝑥 ∗ (𝑔);

 and the proof follows.            ⟍ 

We now define the PUL ∗-Pettis integral of 𝑓: 𝐈 → 𝑋 

and such integral of 𝑓  over the closed and bounded 

interval 𝐉 ⊆ 𝐈, if it exists, will be denoted by  

(𝒫𝒫) = ∫
𝐉

𝑓.

Definition 6.6  If 𝑓: 𝑰 → 𝑋 is PUL ∗-Dunford 

integrable where ∫
𝑱

𝑓 ∈ 𝑋 for every compact interval 𝑱 ⊆ 𝑰,

then 𝑓 is said to be PUL ∗-Pettis integrable over 𝑱 and  

(𝒫𝒟) ∫
𝐉

𝑓 = (𝒫𝒫) ∫
𝐉

𝑓

is called the PUL ∗-Pettis integral of 𝑓 over 𝑱 ⊆ 𝑰. We denote 

by 𝒫𝒫 the set of all PUL ∗-Pettis integrable functions 𝑓: 𝐈 →

𝑋.  

Remark 6.7 If (𝒫𝒫) ∫
𝑱

𝑓 exists, then (𝒫𝒫) ∫
𝑱

𝑓 ∈

𝑒(𝑋) ⊆ 𝑋∗∗, where 𝑒 is the canonical embedding of 𝑋 into 

𝑋∗∗.  

 Throughout the rest of the paper, if no confussion 

arises, 𝑒 means the canonical mapping from 𝑋 → 𝑋∗∗.  

Theorem 6.8 The PUL ∗-Pettis integral of 𝑓: 𝑰 → 𝑋, 

if it exists, is unique.  

Proof:  Assume that (𝒫𝒫) ∫
𝐉

𝑓 exists for all 𝐉 ⊆ 𝐈.

By Definition 6.6,  

(𝒫𝒫) ∫
𝐉

𝑓 = (𝒫𝒟) ∫
𝐉

𝑓.

Fix 𝐉 ⊆ 𝐈 . Since (𝒫𝒟) ∫
𝐉
  is unique; then so as (𝒫𝒫) ∫

𝐉
𝑓 .

⟍  

Theorem 6.9 Let 𝑓, 𝑔 ∈ 𝒫𝒫. Then for each 𝛼, 𝛽 ∈

ℝ, 𝛼𝑓 + 𝛽𝑔 ∈ 𝒫𝒫 and  

(𝒫𝒫) ∫
𝐉

(𝛼𝑓 + 𝛽𝑔) = 𝛼 ⋅ (𝒫𝒫) ∫
𝐉

𝑓 + 𝛽 ⋅ (𝒫𝒫) ∫
𝐉

𝑔

for all 𝐉 ⊆ 𝐈.  

   Proof:  Let 𝛼, 𝛽 ∈ ℝ and let 𝐉 ⊆ 𝐈. Then 𝛼 ⋅ 𝑓 + 𝛽 ⋅

𝑔 ∈ 𝒫𝒟 and  

(𝒫𝒟) ∫
𝐉

[𝛼 ⋅ 𝑓 + 𝛽 ⋅ 𝑔] = 𝛼 ⋅ (𝒫𝒟) ∫
𝐉

𝑓 + 𝛽 ⋅

(𝒫𝒟) ∫
𝐉

𝑔. (∗)

Since (𝒫𝒟) ∫
𝐉

𝑓, (𝒫𝒟) ∫
𝐉

𝑔 ∈ 𝑒(𝑋) , we choose 𝑥1, 𝑥2 ∈ 𝑋

such that  

(𝒫𝒟) ∫
𝐉

𝑓 = 𝑥1

and 

(𝒫𝒟) ∫
𝐉

𝑔 = 𝑥2.

So, 𝛼 ⋅ 𝑥1 + 𝛽 ⋅ 𝑥2 ∈ 𝑋. Note that 𝛼 ⋅ 𝑓 + 𝛽 ⋅ 𝑔 ∈ 𝒫𝒟. By (∗),  

(𝒫𝒟) ∫
𝐉

[𝛼 ⋅ 𝑓 + 𝛽 ⋅ 𝑔] = 𝛼 ⋅ (𝒫𝒟) ∫
𝐉

𝑓 +

𝛽 ⋅ (𝒫𝒟) ∫
𝐉

𝑔

= 𝛼 ⋅ 𝑒(𝑥1) + 𝛽 ⋅ 𝑒(𝑥2) 

= 𝑒(𝛼 ⋅ 𝑥1 + 𝛽 ⋅ 𝑥2) 

∈ 𝑒(𝑋). 

 This means that 𝛼 ⋅ 𝑓 + 𝛽 ⋅ 𝑔 ∈ 𝒫𝒫 and 

(𝒫𝒫) ∫
𝐉

[𝛼 ⋅ 𝑓 + 𝛽 ⋅ 𝑔] = (𝒫𝒟) ∫
𝐉

[𝛼 ⋅ 𝑓 +

𝛽 ⋅ 𝑔] 

= 𝛼 ⋅ (𝒫𝒟) ∫
𝐉

𝑓 + 𝛽 ⋅ (𝒫𝒟) ∫
𝐉

𝑔

= 𝛼 ⋅ (𝒫𝒫) ∫
𝐉

𝑓 + 𝛽 ⋅ (𝒫𝒫) ∫
𝐉

𝑔;

 and the conclusion follows.            ⟍  

Theorem 6.10  A function 𝑓: 𝑰 → 𝑋 is PUL ∗-

Dunford integrable if an only if 𝑥∗(𝑓) is PUL ∗-integrable 

over 𝑰 for all 𝑥∗ ∈ 𝑋∗.  

   Proof:  If 𝑓: 𝐈 → ℝ  is PUL  ∗ -Dunford integrable 

over 𝐈 , then by Definition 6.2, 𝑥∗(𝑓): 𝐈 → ℝ  is PUL  ∗ -

integrable over 𝐈. Conversely, suppose that 𝑥∗(𝑓): 𝐈 → ℝ is 

PUL  ∗ -integrable on 𝐈 . Let 𝐉 ⊆ 𝐈 . Then 𝑥∗(𝑓)  is PUL  ∗ -

integrable over 𝐉 . Thus, (𝒫) ∫
𝐉

𝑥∗(𝑓) ∈ ℝ . Define 𝑥∗∗: 𝑋∗ →

ℝ by  

𝑥𝐉
∗∗(𝑥∗) = (𝒫) ∫

𝐉
𝑥∗𝑓,  𝑓𝑜𝑟  𝑎𝑙𝑙   𝑥∗ ∈ 𝑋∗. 

Then 𝑥𝐉
∗∗ ∈ 𝑋∗∗ . Therefore, 𝑓  is PUL  ∗ -Dunford integrable

over 𝐈.            ⟍ 

Remark 6.11 (Additivity of the PUL$^*$-

Dunford) Let 𝑓: 𝑰 → 𝑋 is PUL ∗-Dunford integrable over 𝑰. If 

𝑓 is PUL ∗-Dunford integrable over the closed and bounded 

subintervals 𝑱, 𝑲 of 𝑰 where 𝑱 and 𝑲 nonoverlapping, then 𝑓 

is PUL ∗-Dunford integrable over 𝑱 ∪ 𝑲 and  

(𝒫𝒟) ∫
𝐈∪𝐉

𝑓 = (𝒫𝒟) ∫
𝐉

𝑓 + (𝒫𝒟) ∫
𝐊

𝑓.

Remark 6.12 (Additivity of the PUL$^*$-Pettis) 

Let 𝑓: 𝑰 → 𝑋 is PUL ∗-Pettis integrable over 𝑰. If 𝑓 is PUL ∗-

Pettis integrable over the closed and bounded subintervals 
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𝑱, 𝑲 of 𝑰 where 𝑱 and 𝑲 nonoverlapping, then 𝑓 is PUL ∗-

Pettis integrable over 𝑱 ∪ 𝑲 and  

(𝒫𝒫) ∫
𝐈∪𝐉

𝑓 = (𝒫𝒫) ∫
𝐉

𝑓 + (𝒫𝒫) ∫
𝐊

𝑓.

Theorem 6.13 (Cauchy Criterion) A function 

𝑓: 𝑰 → ℝ is PUL ∗-Dunford integrable over 𝑰 if and only if for 

every 𝜖 > 0, there exists a gauge 𝛿: 𝑰 → ℝ+ such that if 𝐷1

and 𝐷2 are two 𝛿-fine divisions of 𝑰, then  

∥ 𝑆(𝑓, 𝐷1) − 𝑆(𝑓, 𝐷2) ∥𝑋< 𝜖. 

   Proof:  Let 𝑓: 𝐈 → ℝ be PUL ∗-Dunford integrable 

over 𝐈. Fix 𝜖 > 0. By Theorem 6.10, 𝑥∗(𝑓) is PUL ∗-integrable 

over 𝐈  for all 𝑥∗ ∈ 𝑋∗ . Here, we are done if 𝑥∗ ∈ 𝑋∗  is the 

zero map. Assume that 𝑥∗ ∈ 𝑋∗⟍{𝜃} , where 𝜃  is the zero 

map. Then we choose 𝛿: 𝐈 → ℝ+ such that for any two 𝛿-

fine divisions 𝐷1 and 𝐷2 of 𝐈, we have  

∥ 𝑆(𝑥∗(𝑓), 𝐷1) − 𝑆(𝑥∗(𝑓), 𝐷2) ∥𝑋< 𝜖 ⋅∥

𝑥∗ ∥𝑋∗ ,

 that is, 

∥ 𝑆(𝑓, 𝐷1) − 𝑆(𝑓, 𝐷2) ∥𝑋=∥ 𝑆(𝑥∗(𝑓), 𝐷1) −

𝑆(𝑥∗(𝑓), 𝐷2) ∥⋅
1

∥𝑥∗∥𝑋∗

<
𝜖⋅∥𝑥∗∥𝑋∗

∥𝑥∗∥𝑋∗

= 𝜖. 
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