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ABSTRACT

A Riemannian approach of the PU integral is a Henstock-type
method anchored in the concept of a partition of unity. An integral of
Pettis type, on the other hand, is essential, somehow, in formulating an
integral in a Banach space. In this paper, the PU-Pettis integral is
formulated, along with some of its basic properties.
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1. INTRODUCTION

A Henstock integration that is endowed with a
covering system obtained from a partition of unity is,
apparently, the PU-Integral. Up to date, there are relatively
few papers pursued with regards to the PU-integral. The
definition were first introduced by J. Kurzweil and J. Jarnik
and they mentioned that the PU-integral can be untilized
in formulating a gauge type integral defined on a smooth
manifold. On one hand, Pettis integral started with being
an extension of the Lebesgue integral to Banach-valued
functions on a measure space. Similar approach of the
Pettis integral in some gauge integrals, like the Henstock
integral and the McShance integral, were studied. Thus, it
is worthwhile, however, to investigate Pettis approach of
the PU-integral.

Throughout the rest of the paper, with respect to the
perspective of Henstock, the following conventions will be
adopted:

1. A finite collection of point-interval pair
{(t;, I}, where I; is a compact interval, is of Perron type
ift; €l; foralli <m;

2. agauge § is any positive functions;

3. for a gauge § on [a, b], a finite collection of
point interval pairs, of Perron type, {(t;, I;)}[%, is said to be
&-fine Perron partition of [a, b] if I; is a partition of [a, b]
and I; € B(t;,6(t;)); and

Recently, Boonpogkrong, revisited the PUL integral
and it's utilzation for the integrals of a function defined on
a smooth manifold. Moreover, Flores and Benitez [4, 5]
extended the latter in Stieltjes approach and provided
some convergence theorems. In addition, Flores [3]
introduced the PUL * integral to a Banach-valued function
as an extension of the PUL-integral.

1.1 Review of Literature

Throughout the discussions on the literature, we
denote a compact interval in R™ by [a,b] = [1¢-; [ak, bk]
with [ag, b,] € R for each k=1,2,..,n and u([a,b]) =
[Ti.; (b — ai) be the volume of [a,b]. In addition, R™ is
equipped with the norm ||-|| defined by

Il x = max{|x;|:i = 1,2,--,n}

and for r > 0, we write B(x;r) ={y € R%:|lx—yll, <7},
where

X=y =X —Y1,X = Y2, Xy = V)

forx = (xq, x5, ..., ) and y = (¥4, V2, -, Y)-

For a smooth function i: [a,b] = R, the support of
1, denoted by suppy, is given by

suppy = {x € [a,b]:¥(x) # 0},

where 4 denotes the closure of A € R™. A gauge on [a,b]
is a positive function defined on [a, b].

Definition 3.1 [3] A finite collection {i;}r=, of smooth
functions defined on [a,b] is said to be a partial partition
of unity if the following holds:

1. P, (§) = 0 for almost all € € [a,b] and for all
ke{12,--,m}and

2. Y, Y (®) <1 for almost all € € [a,b].

If X7, ¥, =1 ae. on [a,b], then {{,}ir, is said
to be a partition of unity.

Definition 3.2 [3] Let:[a,b] - R be a smooth function
and & a gauge on [a,b]. A triple (§, I, y), with§ € I < [a,b],
is said to be &-fine if

suppyp S 1< B(&;6(8)).

If 6, and &, are gauges on [a, b] such that §, (%) =
6,(8) and (§,1,y) is §,-fine, then (§,1,) is also §,-fine.

Throughout this paper, a division of [a,b] is a finite
collection D = {I;}7-, of subintervals I, = [}~ [agk),bgk)]

of [a,b] such that int(I}) nint(I;) =2 for k#j and
UR, I = [a,b].

Definition 3.3 [1] A finite collection D = {(&;, I, ¥;)}ie, is
said to be a & -fine partial PU-division of [a,b] if the
collection {¥, }i-, is a partial partition of unity and every
& L, ¥y) is 6-fine. If (i }r=, is a partition of unity, then D
is said to be a §-fine PU-division of [a,b].

The existence of & -fine divisions of [a,b] is
guaranteed by the open covering theorem and the
existence of a partition of unity [1].

Let D = {(& Ly)} is a finite collection of §-fine PU
division of [a, b]. We define

S¢ED=D @ [ v,
D
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Wherefl Y is the Lebesgue integral of i on L

Remark 3.4 [4] If D, ={&. L, o)}, and D,=
{1, ¥}, are two §-fine PU-divisions of [a,b], then

S(f' DI) = S(f' DZ)-

1.2. Objectives

The goal of this paper is to formulate the PU-Pettis
integral in Banach Space including some of its fundamental
properties. To attain the above mentioned, the following
are the objectives of the study: To define the PUL *-integral
in Banach Space and to investigate its simple properties; to
duduce the following:

1. Linearity property;
2. Cauchy-Criterion and its corollary results; and
3. The existence theorem;

Definition 4.1 [3] Let (X, IIIl) be a Banach space.
A function f:[a,b] - X is said to be PU integrable to A €
X over [a,b] if for every € > 0, there exists a gauge § on
[a,b] such that for every §-fine PU-division D =
{G I, Y1) }k=, of [a,b], we have

IIS(f,D) — All < e.
If A is the PU-integral of f over [a, b], then we write
A=) [ I

Note that Remark 3.4 means that a PUL* sum is
independent of the choice of the partition of unity.
Consequently, the value the PUL * integral is independent
of the choice of the partition of unity.

Example 4.2 Define f:[0,1] - R by

if xeQn[01]
otherwise

o[

for all X €[0,1]. Let e >0. Note that Q is a
countable set; thus, we write Q = {q,}-,. Define §:[0,1] —»
R by

50) ={# if xeQn[o1]

1, otherwise

for all X €[0,1]. Here, § is a gauge on [0,1]. Fix D =
{¢,1, ¢}, a 6-fine PU-division of [0,1]. Observe that
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120 ) f, 0 =01 =125 £ ], @l

12 o [ e+X o fEO ol
£€[0,1]nQ £€[0,1]8Q
=12 b f®)el=
£€[0,1]nQ
X o Jel=X o |[ ol
£€[0,1]1nQ £€[0,1]nQ
<X o Jlel<E » [1=
£€[0,1]nQ £€[0,1]nQ
X o u
§€[0,1]nQ
<X b 6 <AL 6(8)=
£€[0,1]nQ
0 €
n:lm
:E}

where u is the Lebesgue measure. This means that f, the
Dirichlet function, also called as the Weierstrass function,
is PUL*-integrable to 0 on [0,1].

Recall that the Dirichlet function fails to be
Riemann integrable; hence the latter example portays an
important facet of the PUL*-integral.

2. PROCEDURE AND METHODOLOGY

Researches in pure mathematics in nature are basic
research. Thus, procedures and methodologies endowed in
the study are straightforward; namely, gathering of reading
materials such as books, monographs, and research articles
that is related and substantial to the results obtained in the
study. Results are classified as either Theorems (main
results), Propositions, Lemmas, Corollaries or as immediate
as Remarks. These results are to be verified only, with rigor
and rigid manner, by valid proofs.

3. RESULTS AND DISCUSSION

In this section, the main results of the paper will be
presented incuding all of its proofs and discussions. For
simplicity, provided that it is free from confusion, we
denote a compact interval in [a,b] by L

Throughout the rest of the paper, provided these
are free from confusions, we denote by LJ,:- a compact
interval in R™, X is a Banach space, and for an X-valued
function f defined on I, the PUL *-integral of f over I will
be denoted by

@ f
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Proposition 6.1 Suppose that f:1 - X is PUL *-
integrable over I. Then for every x* € X*, x*:1 » R is
PUL *-integrable over I and

P) () =x"((P) f; -

Proof. Assume that f is PUL *-integrable to 4 €
X overL Let x* € X* and let € > 0. Then there exists §.:1 -
R* such that

€
™l = +1

I S(f,D) — Allx<

for every §.-fine PU-division of L. Fix a §.-fine division D of
I. Then observe that

IS f,D) = x*((P) [, /) Ix=Il
x*(S(f,D) = (P) J, ) I

I x* gl S(F,D) = (P) [, f NIy

€

< x*llg=+1)-

Il * Iy +1
= 6;

and the conclusion follows.

Definition 6.2 Let f:I —» X be any X-valued
function such that x*(f): I - R is PUL *-integrable over I
for all x* € X*. If for every interval J € I, there exists an
element x;” € X** such that

() = (P) j] *(f)

forall x* € X*, then f is called the PUL *-Dunford integrable
over I. Moreover, for J €1, we write the PUL *-Dunford
integral of f over J by

(PD) fl f=x"ex

Here, we denote by PD the set of all PUL *-Dunford
integrable functions f:1 - R.

Remark 6.3 Let f: I - X be an X-valued function
in PD(). If] < I, then

(?D)flf=(3’0)flf-x;-

Theorem 6.4 The PUL *-Dunford integral of f
over I, If it exists, is unique.

Proof.  Suppose that f is PUL * -Dunford
integrable over I. Then for every x* € X*, x*(f) is PUL *-
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integrable and for each J €1, there exists x;" € X™ such
that

") = (P) f; x* ()

for all x* € X*. For J € I, assume that x;*, y;" € X are the
values of the PUL *-Dunford integral of f over L. Let x* €
X*. Then x*(f) is PUL *-integrable over 1. But

) = (@) [ () =y (x).B

Theorem 6.5 Let f, g € PD(I). Then for each
a,B ER af +Bg € PDU) and

PD) J, (af + @) =a-(PD) [, f+B-(PD) ) g
forallJ C L.
Proof. Let a, B € R. Fix x* € X*. Observe that
x*(af +pg) =a-x*(f)+B-x"(9)

where a - x*(f) + a - x*(f) + B - x*(g) is PUL *-integrable
over I and

P J lax*(F) +Bx* (@Dl =a-(P) [ f+B-
®J g (6.1)

Next, let J € I. By the integrability, in a sense of PUL *-
Dundord, of f and g over I, we choose the operators
x;", ;" € X™ such that for each x* € X*

X (@) = (P) f] ()
and
Yi () = (P) f] ().

Observe that ax;* + By;* € X*. Put z;* = axj” + By;". Fix
x* € X*. Then by (6.1)
77 @) = (axg” + By I@) = ax” () + Byy ()
=@ X () + Y @)
=a- (P [N +B- @) f ' (9)
= @) J; [ax" (f) + B (9)]
= @) J, x'(ef +B9).

This means that that af + Bg is PUL *-Dunford integrable.
Moreover,

(?D)fl(af+ﬁg) Py e
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=a-(PD) [ x+(f)+B-(PD) [ x*(9);
and the proof follows.

We now define the PUL *-Pettis integral of f:1 - X
and such integral of f over the closed and bounded
interval J € 1, if it exists, will be denoted by

@P) =] f.

Definition 6.6 I/f f:1 —» X is PUL *-Dunford
integrable where fl f € X for every compact interval J € I,

then f is said to be PUL *-Pettis integrable over J and
@D) [ f=@P) ] f

is called the PUL *-Pettis integral of f over J] < I. We denote
by PP the set of all PUL *-Pettis integrable functions f:1 —
X.

Remark 6.7 If (PP) fl f exists, then (PP) f] fe

e(X) € X**, where e is the canonical embedding of X into
X

Throughout the rest of the paper, if no confussion
arises, e means the canonical mapping from X - X**.

Theorem 6.8 The PUL *-Pettis integral of f:1 — X,
if it exists, is unique.

Proof. Assume that (PP) f] f exists for all J € L.
By Definition 6.6,

@P) ) f=@D)J f.

Fix J € 1. Since (PD)f] is unique; then so as (??)f]f.
2l

Theorem 6.9 Let f, g € PP. Then for each a, €
R, af + Bg € PP and

@P)f, (af +Bg) =a-(PP)[ f+-(PP) g
forallJc L

Proof. Leta,p e RandletJS L. Thena-f+ 8-
g € PD and

PD) [ [a-f+B-gl=a PD) ) f+§"
PD) J; 9-()

Since (PZ))J']f, (?Z))f] g €Ee(X), we choose x;,x, €X
such that
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D), f=x
and
PD) [, g = x,.
So,a-x,+f-x, €X.Notethata - f + B - g € PD. By (%),
PD) fi[a-f+B-gl=a - (PD)f f+
B-(PD)J g
=a-e(x;)+pe(xy)
=e(a-x, +fx3)
€ e(X).
This means thata - f + § - g € PP and
PP fjla-f+B-gl=PD) [ [a f+

B - gl
=a-(PD)J f+B-(PD)J g
=a-PP) f+B-PP)) g
and the conclusion follows.

Theorem 6.10 A function f:1 - X is PUL *-
Dunford integrable if an only if x*(f) is PUL *-integrable
over I for all x* € X*.

Proof. If f:1 - R is PUL *-Dunford integrable
over I, then by Definition 6.2, x*(f):I > R is PUL *-
integrable over I. Conversely, suppose that x*(f):I - Ris
PUL * -integrable on I. Let JSI. Then x*(f) is PUL *-
integrable over J. Thus, (?)f] x*(f) € R. Define x**: X* -

R by

X (x") = (.‘P)f] x*f, for all x* € X"

Then x;* € X™. Therefore, f is PUL *-Dunford integrable
over L.

Remark 6.11 (Additivity of the PUL$A*$-
Dunford) Let f:I — X is PUL *-Dunford integrable over I. If
f is PUL*-Dunford integrable over the closed and bounded
subintervals J, K of I where J and K nonoverlapping, then f
is PUL *-Dunford integrable over J U K and

®D) [, f = (PD) J, f + (PD) J f.

Remark 6.12 (Additivity of the PUL$ " *$-Pettis)
Let f:1 - X is PUL *-Pettis integrable over I. If f is PUL*-
Pettis integrable over the closed and bounded subintervals
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J, K of I where J and K nonoverlapping, then f is PUL *-
Pettis integrable over J U K and

@P) fyy f = PP [ f+ (PP) [ f.

Theorem 6.13 (Cauchy Criterion) A function
f:1 - R is PUL*-Dunford integrable over I if and only if for
every € > 0, there exists a gauge 6:1 - R* such that if D,
and D, are two §-fine divisions of I, then

I SC(f, D) —S(f,D,) lIx< e.

Proof. Let f:1 - R be PUL*-Dunford integrable
over L. Fix e > 0. By Theorem 6.10, x*(f) is PUL *-integrable
over I for all x* € X*. Here, we are done if x* € X* is the
zero map. Assume that x* € X*@{0}, where 6 is the zero
map. Then we choose §:1 - R* such that for any two &-
fine divisions D; and D, of I, we have

I S(x*(f),D1) = S(x*(f), Do) lx< el
x* g,
that is,

I S, Dy) = S(f, D) lly=Il S(x*(F), Dy) —
S(*(f), D) Il ——

llac*ll g+

ellx*llys

llac* g

= €.
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