Total Phenolic Content and Antibacterial Properties of Gulian and Ginampay (Coix lacryma-jobi L.) Varieties
DOI:
https://doi.org/10.52751/cmujs.2025.v1.w0a0bx51Keywords:
Coix lacryma-jobi L., Phytochemical Screening, Antibacterial assay, Bioactive compoundsAbstract
Coix lacryma-jobi L., commonly known as Adlay or Job’s tears is a traditional crop known for its nutritional and medicinal value, attributed to its diverse phytochemicals. Among its varieties, Gulian and Ginampay are widely cultivated in the Philippines, yet limited studies have investigated their bioactive properties. This study aimed to compare the total phenolic content and antibacterial activity of seed oils from Gulian and Ginampay varieties. Phytochemical screening of oil extracted via solvent-extraction revealed that Gulian oil contained significantly higher levels of total phenolics (4.8 mg GAE/g) and terpenoids compared to Ginampay, indicating a richer profile of bioactive compounds. Antibacterial activity, assessed using the Kirby-Bauer Disk Diffusion Assay against Salmonella typhimurium, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis, showed that Gulian oil exhibited concentration-dependent inhibition, specifically against Gram-positive bacteria. At 70% v/v dilution, it produced zones of inhibition of 9.01 mm and 6.17 mm against S. aureus and B. subtilis, respectively. In contrast, Ginampay oil demonstrated minimal or no antibacterial effects. Statistical analysis confirmed significant differences among treatments (p < 0.05). Overall, the findings showed the superior phytochemical content and moderate antibacterial potential of Gulian seed oil, supporting its possible application as a natural therapeutic and antimicrobial agent, while Ginampay oil may require enhancement for effective antimicrobial use, indicating potential for formulation improvement.
Downloads
References
Yu, Q., Ye, G., Lei, Z., Yang, R., Chen, R., He, T., & Huang, S. (2021). An isolated compound from stems and leaves of Coix lacryma-jobi L. and its anticancer effect. Food Bioscience, 42, 101047. https://doi.org/10.1016/j.fbio.2021.101047
Aradilla, A. (2016). Determining the best time to plant Adlay (Coix lacryma-jobi l.) in southern Bukidnon, Mindanao, Philippines. International Journal of Education and Research, Vol. 4(No. 5). https://www.ijern.com/journal/2016/May-2016/35.pdf
Sarmiento, B. S. (2012, March 4). Adlay instead of rice, anyone? MindaNews. https://mindanews.com/top-stories/2012/03/Adlay-instead-of-rice-anyone/#gsc.tab=0
Nidoy, M. G. (2022, February 2). Rice-Adlay, new blend for the palate. Philippine Rice Research Institute. https://www.philrice.gov.ph/rice-Adlay-new-blend-palate/#:~:text=Adlay%20is%20grown%20and%20consumed,%2C%20Romblon%2C%20the%20Bicol%20Region.
Laxmisha, K., Semwal, D. P., Gupta, V., Katral, A., Bisht, I., Mehta, P., Arya, M., Bhardwaj, R., & Bhatt, K. (2022). Nutritional profiling and GIS-based grid mapping of Job’s tears (Coix lacryma-jobi L.) germplasm. Applied Food Research, 2(2), 100169. https://doi.org/10.1016/j.afres.2022.100169
Ahmad, R., Liaquat, M., Sammi, S., Al-Hawadi, J. S., Jahangir, M., Mumtaz, A., Khan, I., Okla, M. K., Alaraidh, I. A., AbdElgawad, H., Liu, K., Harrison, M. T., Saud, S., Hassan, S., Nawaz, T., Zhu, M., Liu, H., Adnan, M., Sadiq, A., . . . Fahad, S. (2024). Physicochemical and nutritional profiles of wild Adlay (Coix lacryma-jobi Linn) accessions by GC, FTIR, and spectrophotometer. Food Chemistry X, 101418. https://doi.org/10.1016/j.fochx.2024.101418
Bhandari, S. R., Park, S., Cho, Y., & Lee, Y. (2012). Evaluation of phytonutrients in Adlay (Coix lacryma-jobi L.) seeds. AFRICAN JOURNAL OF BIOTECHNOLOGY, 11(8). https://doi.org/10.5897/ajb11.2416
Xi, X., Zhu, Y., Tong, Y., Yang, X., Tang, N., Ma, S., Li, S., & Cheng, Z. (2016). Assessment of the Genetic Diversity of Different Job’s Tears (Coix lacryma-jobi L.) Accessions and the Active Composition and Anticancer Effect of Its Seed Oil. PLoS ONE, 11(4), e0153269. https://doi.org/10.1371/journal.pone.0153269
Zhang, C., Zhang, W., Shi, R., Tang, B., & Xie, S. (2019). Coix lachryma-jobi extract ameliorates inflammation and oxidative stress in a complete Freund’s adjuvant-induced rheumatoid arthritis model. Pharmaceutical Biology, 57(1), 792–798. https://doi.org/10.1080/13880209.2019.168752
Jiang, H., Wang, B., Li, X., Lü, E., & Li, C. (2007). A consideration of the involucre remains of Coix lacryma-jobi L. (Poaceae) in the Sampula Cemetery (2000 years BP), Xinjiang, China. Journal of Archaeological Science, 35(5), 1311–1316. https://doi.org/10.1016/j.jas.2007.09.006
Xu, L., Chen, L., Ali, B., Yang, N., Chen, Y., Wu, F., Jin, Z., & Xu, X. (2017). Impact of germination on nutritional and physicochemical properties of adlay seed (Coixlachryma-jobi L.). Food Chemistry, 229, 312–318. https://doi.org/10.1016/j.foodchem.2017.02.096
Li, W., Wang, Y., Wang, Y., & Huang, Y. (2016). Chemical composition and antibacterial activity of Coix lacryma-jobi seed oil. Journal of Food Biochemistry, 40(5), 619–626. https://doi.org/10.1111/jfbc.12249
Zhou, H., Zhang, J., & Zhang, W. (2008). Karyotype analysis and genome size determination of different varieties of Coix (Coix lacryma-jobi L.). Journal of Genetics and Genomics, 35(6), 381–387.
Gloria, A. L., Alegado, J. C., & Boco, M. D. A. (2015). ADAPTABILITY TRIAL OF FIVE (5) VARIETES OF Adlay (Coix lacryma, Jobi L.) GROWN IN MARGINAL LAND, UNDER SAN MIGUEL ENVIRONMENT CONDITION, SURIGAO DEL SUR, MINDANAO, PHILIPPINES. SDSSU Multidisciplinary Research Journal, 3, 70–77.
Mendoza, A. J. A., Sabellano, F. M., Baco, L. T., Nabua, W. C., & Pantallano, E. S. (2017). VARIETAL PERFORMANCE OF Adlay (Coix lacryma-jobi L.). Academia, 3(1). http://www.nmsc.edu.ph/ojs/index.php/nrj/article/download/45/20
Lavenburg, V. M., Rosentrater, K. A., & Jung, S. (2021). Extraction Methods of Oils and Phytochemicals from Seeds and Their Environmental and Economic Impacts. Processes, 9(10), 1839. https://doi.org/10.3390/pr9101839
Rahimah, S. B., Djunaedi, D. D., Soeroto, A. Y., & Bisri, T. (2019). The the phytochemical screening, total phenolic contents and antioxidant activities in vitro of white oyster mushroom (Pleurotus ostreatus) preparations. Open Access Macedonian Journal of Medical Sciences, 7(15), 2404–2412. https://doi.org/10.3889/oamjms.2019.741
Lekganyane, M. A., Matsebatlela, T. M., Howard, R. L., Shai, L. J., & Masoko, P. (2012). The phytochemical, antibacterial and antioxidant activity of five medicinal plants against the wound infecting bacteria. AFRICAN JOURNAL OF BIOTECHNOLOGY, 11(68). https://doi.org/10.5897/ajb12.885
Czajkowska, A., Korsak, D., Fiedoruk-Pogrebniak, M., Koncki, R., & Strzelak, K. (2023). Turbidimetric flow analysis system for the investigation of microbial growth. Talanta, 268, 125303. https://doi.org/10.1016/j.talanta.2023.125303
Al-Shuneigat, J., Sarayreh, S. A., Al-Qudah, M., Al-Tarawneh, I., Al–Saraireh, Y., & Al-Qtaitat, A. (2014). GC-MS Analysis and Antibacterial Activity of the Essential Oil Isolated from Wild Artemisia herba-alba Grown in South Jordan. British Journal of Medicine and Medical Research, 5(3), 297–302. https://doi.org/10.9734/bjmmr/2015/12390
Diningrat, S., Harahap, N., Risfandi, M., & Nirmala, A. (2021). Antioxidant and antibacterial activities of Coix lacryma-jobi seed and root oil potential for meningitis treatment. Jordan Journal of Biological Sciences, 14(05), 881–887. https://doi.org/10.54319/jjbs/140501
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology on CD-ROM/Methods in enzymology (pp. 152–178). https://doi.org/10.1016/s0076-6879(99)99017-
Lin, D., Xiao, M., Zhao, J., Li, Z., Xing, B., Li, X., Kong, M., Li, L., Zhang, Q., Liu, Y., Chen, H., Qin, W., Wu, H., & Chen, S. (2016). An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 21(10), 1374. https://doi.org/10.3390/molecules21101374
Shahidi, F., & Chandrasekara, A. (2010). Antioxidants in cereal grains. Journal of Agricultural and Food Chemistry, 58(7), 4087–4097.
Zieliński, H., & Kozłowska, H. (2000). Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. Journal of Agricultural and Food Chemistry, 48(6), 2008–2016. https://doi.org/10.1021/jf990619o
Wang, L., Chen, J., Xie, H., Ju, X., & Liu, R. H. (2013). Phytochemical profiles and antioxidant activity of Adlay varieties. Journal of Agricultural and Food Chemistry, 61(21), 5103-5113. https://doi.org/10.1021/jf400556s
Xu, L., Wang, P., Ali, B., Yang, N., Chen, Y., Wu, F., & Xu, X. (2017). Changes of the phenolic compounds and antioxidant activities in germinated adlay seeds. Journal of the Science of Food and Agriculture, 97(12), 4227-4234. https://doi.org/10.1002/jsfa.8298
Andriana, Y., Fajriani, N. A., Iwansyah, A. C., & Xuan, T. D. (2023). Phytochemical Constituents of Indonesian Adlay (Coix lacrima-jobi L.) and Their Potential as Antioxidants and Crop Protection Agents. Agrochemicals, 2(1), 135–149. https://doi.org/10.3390/agrochemicals2010010
Martini, D., Taddei, F., Nicoletti, I., Ciccoritti, R., Corradini, D., & D'Egidio, M. G. (2014). Effects of genotype and environment on phenolic acids content and total antioxidant capacity in durum wheat. Cereal Chemistry, 91(4), 310-317. https://doi.org/10.1094/cchem-09-13-0201-cesi
Zhou, B., Jin, Z., Schwarz, P., & Li, Y. (2020). Impact of genotype, environment, and malting conditions on the antioxidant activity and phenolic content in US malting Barley. Fermentation, 6(2), 48. https://doi.org/10.3390/fermentation6020048
Mpofu, A., Sapirstein, H. D., & Beta, T. (2006). Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. Journal of Agricultural and Food Chemistry, 54(4), 1265-1270. https://doi.org/10.1021/jf052683d
Chen, H., Chung, C., Chiang, W., & Lin, Y. (2010). Anti-inflammatory effects and chemical study of a flavonoid-enriched fraction from adlay bran. Food Chemistry, 126(4), 1741–1748. https://doi.org/10.1016/j.foodchem.2010.12.074
Lawag, I. L., Nolden, E. S., Schaper, A. a. M., Lim, L. Y., & Locher, C. (2023). A modified Folin-Ciocalteu assay for the determination of total phenolics content in honey. Applied Sciences, 13(4), 2135. https://doi.org/10.3390/app13042135
Masyita, A., Sari, R. M., Astuti, A. D., Yasir, B., Rumata, N. R., Emran, T. B., Nainu, F., & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry X, 13, 100217. https://doi.org/10.1016/j.fochx.2022.100217
Sobuj, M. K. A., Shemul, M. S., Islam, M. S., Islam, M. A., Mely, S. S., Ayon, M. H., Pranto, S. M., Alam, M. S., Bhuiyan, M. S., & Rafiquzzaman, S. (2023). Qualitative and quantitative phytochemical analysis of brown seaweed Sargassum polycystum collected from Bangladesh with its antioxidant activity determination. Food Chemistry Advances, 4, 100565. https://doi.org/10.1016/j.focha.2023.100565
Dubale, S., Kebebe, D., Zeynudin, A., Abdissa, N., & Suleman, S. (2023). Phytochemical screening and antimicrobial activity evaluation of selected medicinal plants in Ethiopia. Journal of Experimental Pharmacology, Volume 15, 51–62. https://doi.org/10.2147/jep.s379805
Smith, J., Roberts, D., & Wang, F. (2020). Exploring the antibacterial properties of Gulian extract against pathogens. Journal of Herbal Medicine, 15(4), 567-572
Jones, M., Patel, R., & Zhang, L. (2018). Impact of plant extract concentrations on bacterial growth inhibition. Phytotherapy Research, 32(5), 876-883.
Brown, S., & Lee, C. (2019). Antibacterial activity of plant extracts on foodborne pathogens. Journal of Medicinal Plants, 38(2), 124-130.
Williams, A., Patel, S., & Chan, J. (2021). Variability in antibacterial activity of plant extracts from different geographical regions. Microbiology and Biotechnology Journal, 18(1), 56-64
CLSI. (2018). Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. Clinical and Laboratory Standards Institute.
Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – A review. Food and Chemical Toxicology, 46(2), 446–475.
